Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mhuircheartaigh, R. N.; Rosenorn-Lanng, D.; Wise, Richard Geoffrey; Jbabdi, S.; Rogers, R.; Tracey, I. (2010)
Publisher: Society for Neuroscience
Languages: English
Types: Article
Subjects: RC0321, BF
While ubiquitous, pharmacological manipulation of consciousness remains poorly defined and incompletely understood (Prys-Roberts, 1987). This retards anesthetic drug development, confounds interpretation of animal studies conducted under anesthesia, and limits the sensitivity of clinical monitors of cerebral function to intact perception. Animal and human studies propose a functional “switch” at the level of the thalamus, with inhibition of thalamo-cortical transmission characterizing loss of consciousness (Alkire et al., 2000; Mashour, 2006). We investigated the effects of propofol, widely used for anesthesia and sedation, on spontaneous and evoked cerebral activity using functional magnetic resonance imaging (fMRI). A series of auditory and noxious stimuli was presented to eight healthy volunteers at three behavioral states: awake, “sedated” and “unresponsive.” Performance in a verbal task and the absence of a response to verbal stimulation, rather than propofol concentrations, were used to define these states clinically. Analysis of stimulus-related blood oxygenation level-dependent signal changes identified reductions in cortical and subcortical responses to auditory and noxious stimuli in sedated and unresponsive states. A specific reduction in activity within the putamen was noted and further investigated with functional connectivity analysis. Progressive failure to perceive or respond to auditory or noxious stimuli was associated with a reduction in the functional connectivity between the putamen and other brain regions, while thalamo-cortical connectivity was relatively preserved. This result has not been previously described and suggests that disruption of subcortical thalamo-regulatory systems may occur before, or even precipitate, failure of thalamo-cortical transmission with the induction of unconsciousness.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abulafia R, Zalkind V, Devor M (2009) Cerebral activity during the anesthesia-like state induced by mesopontine microinjection of pentobarbital. J Neurosci 29: 7053- 64.
    • Alkire MT (2008) Loss of effective connectivity during general anesthesia. Int Anesthesiol Clin 46:55-73.
    • Alkire MT, Pomfrett CJ, Haier RJ, Gianzero MV, Chan CM, Jacobsen BP, Fallon JH (1999) Functional brain imaging during anesthesia in humans: effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology 90:701-709.
    • Alkire MT, Haier RJ, Fallon JH (2000) Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn 9:370 -386.
    • Alkire MT, McReynolds JR, Hahn EL, Trivedi AN (2007) Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology 107:264 -272.
    • Angel A (1991) The G. L. Brown lecture. Adventures in anesthesia. Exp Physiol 76:1-38.
    • Antognini JF, Schwartz K (1993) Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 79:1244 -1249.
    • Antognini JF, Barter L, Carstens E (2005) Overview movement as an index of anesthetic depth in humans and experimental animals. Comp Med 55:413- 418.
    • Baars BJ (1995) Tutorial commentary: surprisingly small subcortical structures are needed for the state of waking consciousness, while cortical projection areas seem to provide perceptual contents of consciousness. Conscious Cogn 4:159 -162.
    • Barter LS, Mark LO, Jinks SL, Carstens EE, Antognini JF (2008) Immobilizing doses of halothane, isoflurane or propofol, do not preferentially depress noxious heat-evoked responses of rat lumbar dorsal horn neurons with ascending projections. Anesth Analg 106:985-990.
    • Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Noninvasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750 -757.
    • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537-541.
    • Bonhomme V, Fiset P, Meuret P, Backman S, Plourde G, Paus T, Bushnell MC, Evans AC (2001) Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J Neurophysiol 85:1299 -1308.
    • Braz JM, Nassar MA, Wood JN, Basbaum AI (2005) Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47:787-793.
    • Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110 -2124.
    • Casey KL, Minoshima S, Berger KL, Koeppe RA, Morrow TJ, Frey KA (1994) Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol 71:802- 807.
    • Chudler EH, Dong WK (1995) The role of the basal ganglia in nociception and pain. Pain 60:3-38.
    • Detsch O, Vahle-Hinz C, Kochs E, Siemers M, Bromm B (1999) Isoflurane induces dose-dependent changes of thalamic somatosensory information transfer. Brain Res 829:77- 89.
    • Devor M, Zalkind V (2001) Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain 94:101-112.
    • Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18:2735-2747.
    • Dueck MH, Petzke F, Gerbershagen HJ, Paul M, Hesselmann V, Girnus R, Krug B, Sorger B, Goebel R, Lehrke R, Sturm V, Boerner U (2005) Propofol attenuates responses of the auditory cortex to acoustic stimulation in a dose-dependent manner: a FMRI study. Acta Anaesthesiol Scand 49:784 -791.
    • Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, Hajj-Ali N, Backman SB, Evans AC (1999) Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci 19:5506 -5513.
    • Fountas KN, Smith JR, Robinson JS, Tamburrini G, Pietrini D, Di Rocco C (2006) Anatomical hemispherectomy. Childs Nerv Syst 22:982-991.
    • Franks NP (2008) General anesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9:370 -386.
    • Friston K (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56 -78.
    • Gepts E, Camu F, Cockshott ID, Douglas EJ (1987) Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg 66:1256 -1263.
    • Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685- 694.
    • Hagelberg N, Forssell H, Aalto S, Rinne JO, Scheinin H, Taiminen T, Någren K, Eskola O, Ja¨a¨skela¨inen SK (2003a) Altered dopamine D2 receptor binding in atypical facial pain. Pain 106:43- 48.
    • Hagelberg N, Forssell H, Rinne JO, Scheinin H, Taiminen T, Aalto S, Luutonen S, Någren K, Ja¨a¨skela¨inen S (2003b) Striatal dopamine D1 and D2 receptors in burning mouth syndrome. Pain 101:149 -154.
    • Herrero MT, Barcia C, Navarro JM (2002) Functional anatomy of thalamus and basal ganglia. Childs Nerv Sys 18:386 - 404.
    • Jones AK, Brown WD, Friston KJ, Qi LY, Frackowiak RS (1991) Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc Biol Sci 244:39 - 44.
    • Kaisti KK, Metsa¨honkala L, Tera¨s M, Oikonen V, Aalto S, Ja¨a¨skela¨inen S, Hinkka S, Scheinin H (2002) Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology 96:1358 -1370.
    • Laitio RM, Kaisti KK, Låangsjo¨ JW, Aalto S, Salmi E, Maksimow A, Aantaa R, Oikonen V, Sipila¨ H, Parkkola R, Scheinin H (2007) Effects of xenon anesthesia on cerebral blood flow in humans: a positron emission tomography study. Anesthesiology 106:1128 -1133.
    • Laitio RM, Långsjo¨ JW, Aalto S, Kaisti KK, Salmi E, Maksimow A, Aantaa R, Oikonen V, Viljanen T, Parkkola R, Scheinin H (2009) The effects of xenon anesthesia on the relationship between cerebral glucose metabolism and blood flow in healthy subjects: a positron emission tomography study. Anesth Analg 108:593- 600.
    • Lu J, Nelson LE, Franks N, Maze M, Chamberlin NL, Saper CB (2008) Role of endogenous sleep-wake and analgesic systems in anesthesia. J Comp Neurol 508:648 - 662.
    • Marsh B, White M, Morton N, Kenny GN (1991) Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 67:41- 48.
    • Mashour GA (2006) Integrating the science of consciousness and anesthesia. Anesth Analg 103:975-982.
    • Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228 -2232.
    • Meyer HM (1899) Zur Theorie der Alkoholnarkose. Arch Exp Pathol Pharmakol 42:109 -118.
    • Milne SE, Troy A, Irwin MG, Kenny GN (2003) Relationship between bispectral index, auditory evoked potential index and effect-site EC50 for propofol at two clinical end-points. Br J Anaesth 90:127-131.
    • Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M (2002) The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 5:979 -984.
    • Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M (2003) The alpha2- adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98:428 - 436.
    • Prys-Roberts C (1987) Anesthesia: a practical or impractical construct? Br J Anesth 59:1341-1345.
    • Rasmusson DX, Bylsma FW, Brandt J (1995) Stability of performance on the Hopkins Verbal Learning Test. Arch Clin Neuropsychol 10:21-26.
    • Schiff ND (2008) Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci 1129:105-118.
    • Schiff ND, Plum F (2000) The role of arousal and “gating” systems in the neurology of impaired consciousness. J Clin Neurophysiol 17:438 - 452.
    • Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, Fritz B, Eisenberg B, Biondi T, O'Connor J, Kobylarz EJ, Farris S, Machado A, McCagg C, Plum F, Fins JJ, Rezai AR (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600 - 603.
    • Sear JW (2009) What makes a molecule an anaesthetic? Studies on the mechanisms of anesthesia using a physicochemical approach. Br J Anaesth 103:50 - 60.
    • Shapiro AM, Benedict RH, Schretlen D, Brandt J (1999) Construct and concurrent validity of the Hopkins Verbal Learning Test-revised. Clin Neuropsychol 13:348 -358.
    • Silva A, Cardoso-Cruz H, Silva F, Galhardo V, Antunes L (2010) Comparison of anesthetic depth indexes based on thalamocortical local field potentials in rats. Anesthesiology 112:355-363.
    • Sukhotinsky I, Zalkind V, Lu J, Hopkins DA, Saper CB, Devor M (2007) Neural pathways associated with loss of consciousness caused by intracerebral microinjection of GABA A-active anesthetics. Eur J Neurosci 25:1417-1436.
    • TerRiet MF, Jacobs JS, Lewis MC, DeSouza GJ (2000) Propofol and analgesia. Anesth Analg 90:1455.
    • Tononi G, Edelman GM (1998) Consciousness and complexity. Science 282:1846 -1851.
    • Tracey I, Becerra L, Chang I, Breiter H, Jenkins L, Borsook D, Gonz a´lez RG (2000) Noxious hot and cold stimulation produce common patterns of brain activation in humans: a functional magnetic resonance imaging study. Neurosci Lett 288:159 -162.
    • Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39:107-140.
    • Veselis RA, Feshchenko VA, Reinsel RA, Dnistrian AM, Beattie B, Akhurst TJ (2004) Thiopental and propofol affect different regions of the brain at similar pharmacologic effects. Anesth Analg 99:399 - 408.
    • Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83- 86.
    • Walder B, Trame`r MR, Seeck M (2002) Seizure-like phenomena and propofol: a systematic review. Neurology 58:1327-1332.
    • West MO (1998) Anesthetics eliminate somatosensory-evoked discharges of neurons in the somatotopically organized sensorimotor striatum of the rat. J Neurosci 18:9055-9068.
    • White NS, Alkire MT (2003) Impaired thalamocortical connectivity in humans during general-anesthetic-induced unconsciousness. Neuroimage 19:402- 411.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article