LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lai, Stanley Chi Shing; Dudin, Petr V.; Macpherson, Julie V.; Unwin, Patrick R. (2011)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QD, TP
Identifiers:doi:10.1021/ja203955b
The relationship between the structural properties, such as the size and the shape, of a catalytic nanoparticle and its reactivity is a key concept in (electro) catalysis. Current understanding of this relationship is mainly derived from studies involving large ensembles of nanoparticles (NPs). However, the results necessarily reflect the average catalytic behavior of an ensemble, even though the properties of individual particles may vary widely. Here, we demonstrate a novel approach using scanning electrochemical cell microscopy (SECCM) to locate and map the reactivity of individual NPs within an electrocatalytic ensemble, consisting of platinum NPs supported on a single carbon nanotube. Significantly, our studies show that subtle variations in the morphology of NPs lead to dramatic changes in (potential-dependent) reactivity, which has important implications for the design and assessment of NP catalysts. The instrumental approach described is general and opens up new avenues of research in functional imaging, nanoscale electron transfer, and catalysis.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Somorjai, G. A. Science 1985, 227, 902.
    • (2) Daniel, M.-C.; Astruc, D. Chem. Rev. 2003, 104, 293.
    • (3) Chen, A.; Holt-Hindle, P. Chem. Rev. 2010, 110, 3767.
    • (4) Xu, W. L.; Shen, H.; Liu, G. K.; Chen, P. Nano Res. 2009, 2, 911.
    • (5) Xu, Z.; Xiao, F. S.; Purnell, S. K.; Alexeev, O.; Kawi, S.; Deutsch, S. E.; Gates, B. C. Nature 1994, 372, 346.
    • (6) S nche -S nche , C. M. So-llaull n, . Vida-lIglesias, F. J.; Aldaz, A.; Montiel, V.; Herrero, E. J. Am. Chem. Soc. 2010, 132, 5622.
    • (7) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Science 2007, 316, 732.
    • (8) Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; ElSayed, M. A. Science 1996, 272, 1924.
    • (9) Sun, Y. G.; Xia, Y. N. Science 2002, 298, 2176.
    • (10) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025.
    • (11) Ortalan, V.; Uzun, A.; Gates, B. C.; Browning, N. D. Nature Nanotech. 2010, 5, 843.
    • (12) Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F.; Zapol, P. Nature Mater. 2009, 8, 213.
    • (13) Greeley, J.; Rossmeisl, J.; Hellmann, A.; Nørskov, J. K. Z. Phys. Chem. 2007, 221, 1209.
    • (14) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Ed. 2006, 45, 7896.
    • (15) Krapf, D.; Wu, M.-Y.; Smeets, R. M. M.; Zandbergen, H. W.; Dekker, C.; Lemay, S. G. Nano Lett. 2005, 6, 105.
    • (16) Chen, S.; Kucernak, A. J. Phys. Chem. B 2003, 107, 8392.
    • (17) Xiao, X. Y.; Bard, A. J. J. Am. Chem. Soc. 2007, 129, 9610.
    • (18) Tel-Vered, R.; Bard, A. J. J. Phys. Chem. B 2006, 110, 25279.
    • (19) Meier, J.; Friedrich, K. A.; Stimming, U. Faraday Discuss. 2002, 121, 365.
    • (20) Chen, S.; Kucernak, A. J. Phys. Chem. B 2004, 108, 3262.
    • (21) Bard, A. J. J. Am. Chem. Soc. 2010, 132, 7559.
    • (22) Ebejer, N.; Schnippering, M.; Colburn, A. W.; Edwards, M. A.; Unwin, P. R. Anal. Chem. 2010, 82, 9141.
    • (23) Quinn, B. M.; Dekker, C.; Lemay, S. G. J. Am. Chem. Soc. 2005, 127, 6146.
    • (24) Day, T. M.; Unwin, P. R.; Wilson, N. R.; Macpherson, J. V. J. Am. Chem. Soc. 2005, 127, 10639.
    • (25) Penner, R. M. J. Phys. Chem. B 2002, 106, 3339.
    • (26) Bayati, M.; Abad, J. M.; Nichols, R. J.; Schiffrin, D. J. J. Phys. Chem. C 2010, 114, 18439.
    • (27) Jeon, H.; Joo, J.; Kwon, Y.; Uhm, S.; Lee, J. J. Power Sources 2010, 195, 5929.
    • (28) Wilson, M. S.; Garzon, F. H.; Sickafus, K. E.; Gottesfeld, S. J. Electrochem. Soc. 1993, 140, 2872.
    • (29) Mamat, M. S.; Grigoriev, S. A.; Dzhus, K. A.; Grant, D. M.; Walker, G. S. Int. J. Hydrogen Energy 2010, 35, 7580.
    • (30) Komanicky, V.; Menzel, A.; You, H. J. Phys. Chem. B 2005, 109, 23550.
    • (31) Devred, F.; Gieske, A. H.; Adkins, N.; Dahlborg, U.; Bao, C. M.; Calvo-Dahlborg, M.; Bakker, J. W.; Nieuwenhuys, B. E. Appl. Catal. A: General 2009, 356, 154.
    • (32) Schlogl, R. Angew. Chem.-Int. Edit. 2003, 42, 2004.
    • (33) Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. Nat. Geosci. 2008, 1, 636.
    • (34) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.
    • (35) Vasile, M. J.; Enke, C. G. J. Electrochem. Soc. 1965, 112, 865.
    • (36) Gewirth, A. A.; Thorum, M. S. Inorg. Chem. 2010, 49, 3557.
    • (37) Basame, S. B.; White, H. S. Anal. Chem. 1999, 71, 3166.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article