Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Murphy, John D.; Al-Amin, Mohammad; Bothe, K.; Olmo, M.; Voronkov, V. V.; Falster, R. J. (2015)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: TP
Supersaturated levels of interstitial oxygen in Czochralski silicon can lead to the formation of oxide precipitates. Although beneficial from an internal gettering perspective, oxygen-related extended defects give rise to recombination which reduces minority carrier lifetime. The highest efficiency silicon solar cells are made from n-type substrates in which oxide precipitates can have a detrimental impact on cell efficiency. In order to quantify and to understand the mechanism of recombination in such materials, we correlate injection level-dependent minority carrier lifetime data measured with silicon nitride surface passivation with interstitial oxygen loss and precipitate concentration measurements in samples processed under substantially different conditions. We account for surface recombination, doping level, and precipitate morphology to present a generalised parameterisation of lifetime. The lifetime data are analysed in terms of recombination activity which is dependent on precipitate density or on the surface area of different morphologies of precipitates. Correlation of the lifetime data with interstitial oxygen loss data shows that the recombination activity is likely to be dependent on the precipitate surface area. We generalise our findings to estimate the impact of oxide precipitates with a given surface area on lifetime in both n-type and p-type silicon.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 8I. Kolevatov, V. Osinniy, M. Herms, A. Loshachenko, I. Shlyakhov, V.
    • Kveder, and O. Vyvenko, “Oxygen-related defects: minority carrier lifetime killers in n-type Czochralski silicon wafers for solar cell application,” Phys. Status Solidi C 12, 1108 (2015).
    • 9L. Chen, X. Yu, P. Chen, P. Wang, X. Gu, J. Lu, and D. Yang, “Effect of oxygen precipitation on the performance of Czochralski silicon solar cells,” Sol. Energy Mater. Sol. Cells 95, 3148 (2011).
    • 10D. Song, J. Xiong, Z. Hu, G. Li, H. Wang, H. An, B. Yu, B. Grenko, K.
    • Vlooswijk, and P. R. Venema, paper presented at the 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), Austin, TX (2012).
    • 11F. Schindler, B. Michl, A. Kleiber, H. Steinkemper, J. Scho€n, W. Kwapil, P. Krenckel, S. Riepe, W. Warta, and M. C. Schubert, “Potential gain in multicrystalline silicon solar cell efficiency by n-type doping,” IEEE J.
    • Photovoltaics 5, 499 (2015).
    • 12D. Macdonald and L. J. Geerligs, “Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon,” Appl. Phys. Lett. 85, 4061 (2004).
    • 13F. E. Rougieux, B. Lim, J. Schmidt, M. Forster, D. Macdonald, and A.
    • Cuevas, “Influence of net doping, excess carrier density and annealing on the boron oxygen related defect density in compensated n-type silicon,” J. Appl. Phys. 110, 063708 (2011).
    • 14G. Coletti, P. Manshandena, S. Bernardini, P. C. P. Bronsveld, A.
    • Gutjahra, Z. Hub, and G. Li, “Removing the effect of striations in n-type silicon solar cells,” Sol. Energy Mater. Sol. Cells 130, 647 (2014).
    • 15K. H. Yang, H. F. Kappert, and G. H. Schwuttke, “Minority carrier lifetime in annealed silicon crystals containing oxygen,” Phys. Status Solidi A 50, 221 (1978).
    • 16M. Miyagi, K. Wada, J. Osaka, and N. Inoue, “Effect of oxide precipitates on minority-carrier lifetime in Czochralski-grown silicon,” Appl. Phys.
    • Lett. 40, 719 (1982).
    • 17S. S. Chan, C. J. Varker, J. D. Whitfield, and R. W. Carpenter, “Deep levels associated with oxygen precipitation in Cz silicon and correlation with minority carrier lifetimes,” Mater. Res. Soc. Symp. Proc. 46, 281 (1985).
    • 18J. M. Hwang and D. K. Schroder, “Recombination properties of oxygenprecipitated silicon,” J. Appl. Phys. 59, 2476 (1986).
    • 19J. Vanhellemont, E. Simoen, A. Kaniava, M. Libezny, and C. Claeys, “Impact of oxygen related extended defects on silicon diode characteristics,” J. Appl. Phys. 77, 5669 (1995).
    • 20F. G. Kirscht, Y. Furukawa, W. Seifert, K. Schmalz, A. Buczkowski, S. B.
    • Eng. B 36, 230 (1996).
    • 21J. D. Murphy, K. Bothe, M. Olmo, V. V. Voronkov, and R. J. Falster, “The effect of oxide precipitates on minority carrier lifetime in p-type silicon,” J. Appl. Phys. 110, 053713 (2011).
    • 22J. D. Murphy, K. Bothe, R. Krain, V. V. Voronkov, and R. J. Falster, “Parameterisation of injection-dependent lifetime measurements in semiconductors in terms of Shockley-Read-Hall statistics: an application to oxide precipitates in silicon,” J. Appl. Phys. 111, 113709 (2012).
    • 23J. D. Murphy, K. Bothe, V. V. Voronkov, and R. J. Falster, “On the mechanism of recombination at oxide precipitates in silicon,” Appl. Phys. Lett.
    • 24J. D. Murphy, R. E. McGuire, K. Bothe, V. V. Voronkov, and R. J. Falster, “Minority carrier lifetime in silicon photovoltaics: The effect of oxygen precipitation,” Sol. Energy Mater. Sol. Cells 120, 402 (2014).
    • 25M. Koizuka and H. Yamada-Kaneta, “Electron spin resonance centers associated with oxygen precipitates in Czochralski silicon crystals,” J. Appl. Phys. 88, 1784 (2000).
    • 26V. Lang, J. D. Murphy, R. J. Falster, and J. J. L. Morton, “Spin-dependent recombination in Czochralski silicon containing oxide precipitates,” J. Appl. Phys. 111, 013710 (2012).
    • 27W. Seifert, M. Kittler, M. Seibt, and A. Buczkowski, “Contrastive recombination behaviour of metal silicide and oxygen precipitates in n-type silicon: Attempt at an explanation,” Solid State Phenom. 47-48, 365 (1996).
    • 28T. Mchedlidze and K. Matsumoto, “Electrically detected magnetic resonance signal from iron contaminated Czochralski silicon crystal,” J. Appl. Phys. 83, 4042 (1998).
    • 29J. D. Murphy, R. E. McGuire, K. Bothe, V. V. Voronkov, and R. J. Falster, “Competitive gettering of iron in silicon photovoltaics: Oxide precipitates versus phosphorus diffusion,” J. Appl. Phys. 116, 053514 (2014).
    • 30K. Bothe, R. J. Falster, and J. D. Murphy, “Room temperature subbandgap photoluminescence from silicon containing oxide precipitates,” Appl. Phys. Lett. 101, 032107 (2012).
    • 31R. A. Sinton and A. Cuevas, “Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasisteady-state photoconductance data,” Appl. Phys. Lett. 69, 2510 (1996).
    • 32A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B 86, 165202 (2012).
    • 33K. F. Kelton, R. Falster, D. Gambaro, M. Olmo, M. Cornara, and P. F. Wei, “Oxygen precipitation in silicon: Experimental studies and theoretical investigations within the classical theory of nucleation,” J. Appl. Phys. 85, 8097 (1999).
    • 34F. S. Ham, “Theory of diffusion-limited precipitation,” J. Phys. Chem. Solids 6, 335 (1958).
    • 35T. Y. Tan, L. L. Wu, and W. K. Tice, “Nucleation of stacking faults at oxide precipitate-dislocation complexes in silicon,” Appl. Phys. Lett. 29, 765 (1976).
    • 36S. Senkader, J. Esfandyari, and G. Hobler, “A model for oxygen precipitation in silicon including bulk stacking fault growth,” J. Appl. Phys. 78, 6469 (1995).
    • 37M. J. Kerr and A. Cuevas, “Recombination at the interface between silicon and stoichiometric plasma silicon nitride,” Semicond. Sci. Technol. 17, 166 (2002).
    • 38D. R. Wight, I. D. Blenkinsop, W. Harding, and B. Hamilton, “Diffusionlimited lifetime in semiconductors,” Phys. Rev. B 23, 5495 (1981).
    • 39A. Ourmazd and G. R. Booker, “The electrical recombination efficiency of individual edge dislocations and stacking fault defects in n-type silicon,” Phys. Status Solidi A 55, 771 (1979).
    • 40K. Wada, N. Inoue, and K. Kohra, “Diffusion-limited growth of oxide precipitates in Czochralski silicon,” J. Cryst. Growth 49, 749 (1980).
    • 41G. Hahn, M. K€as, and B. Herzog, “Hydrogenation in crystalline Silicon Materials for photovoltaic Application,” Solid State Phenom. 156-158, 343 (2009).
    • 42E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett. 63, 1510 (1993).
    • 43R. C. Newman, M. J. Binns, W. P. Brown, F. M. Livingston, S. Messoloras, R. J. Stewart, and J. G. Wilkes, “Precipitation of oxygen in silicon: kinetics, solubility, diffusivity and particle size,” Physica B 116, 264 (1983).
    • 44H. C. Sio, S. P. Phang, T. Trupke, and D. Macdonald, “Impact of phosphorous gettering and hydrogenation on the surface recombination velocity of grain boundaries in p-type multicrystalline silicon,” IEEE J. Photovoltaics 5, 1357 (2015).
    • 45W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87, 835 (1952).
    • 46R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87, 387 (1952).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article