Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Thomas, AD; Dougill, AJ; Elliott, DR; Mairs, H (2014)
Publisher: Elsevier
Languages: English
Types: Article
The carbon cycle in salt pans is complex and poorly understood. Field-based data are needed to improve regional estimates of C storage and land-atmosphere CO2 fluxes from dryland environments where pans are prevalent. This paper provides a first estimate of C stores and CO2 efflux within the salt pan, grassland and woodland of Ntwetwe Pan in the Makgadikgadi Basin, Botswana. C fluxes and stores associated with cyanobacteria-salt crusts are also determined. Total C stores are approximately an order of magnitude greater than on neighbouring Kalahari Sands at 675±41, 760±94 and 274±15 tonsha-1 to 1m depth in the woodland, grassland and salt pan respectively. Most of the C is found as carbonate, with organic C comprising 4.6-10% of total C. CO2 efflux increased with temperature and also increased for a few hours after flooding of the pan surface. Crusts were a small net contributor to CO2 efflux in the dry season but could be a net CO2 sink in the wet season. The biogeochemistry of the sediment is likely to facilitate rapid conversion of organic C from aquatic organisms, biological crusts and algal mats into inorganic carbonates. Although further work is required to improve estimates of the spatial and temporal distribution of C, our data have demonstrated the substantial C store with the Makgadikgadi environment and the important role of biological crusts in the C cycle.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H., Spear, J.R., Przekop, K.M., Visscher, P.T., 2006. Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 185, 131-145.
    • Bekker, R.P., De Wit, P.V., 1991. Contribution to the Vegetation Classification of Botswana. Republic of Botswana: Food and Agriculture Organisation of the United Nations, UNDP, Nairobi (66 pp.).
    • Bohn, H.L., McNeal, B.L., Myer, R.A., O'Connor, G.A., 2001. Soil Chemistry, 3rd edition. John Wiley.
    • Bombelli, A., Henry, M., Castaldi, S., Adu-Bredu, S., Arneth, A., de Grandcourt, A., Grieco, E., Kutsch, W.L., Lehsten, V., Rasile, A., Reichstein, M., Tansey, K., Weber, U., Valentini, R., 2009. An outlook on the Sub-Saharan Africa carbon balance. Biogeosciences 6, 2193-2205.
    • Bond-Lamberty, B., Thomson, A., 2010. Temperature-associated increases in the global soil respiration record. Nature 464, 579-583.
    • Briere, P.R., 2000. Playa, playa lake, sabkha: proposed definitions for old terms. J. Arid Environ. 45, 1-7.
    • Burrough, S.L., Thomas, D.S.G., Bailey, R.M., 2009. Mega-lake in the Kalahari: a Late Pleistocene record of the Palaeolake Makgadikgadi system. Quat. Sci. Rev. 28 (15-16), 1392-1411.
    • Chairi, R., Derenne, S., Abdeljaoued, S., Largeau, C., 2010. Sediment cores representative of contrasting environments in salt flats of the Moknine continental sabkha (Eastern Tunisia): sedimentology, bulk features of organic matter, alkane sources and alteration. Org. Geochem. 41, 637-652.
    • Ciais, P., Bombelli, A., Williams, M., Piao, S.L., Chave, J., Ryan, C.M., Henry, M., Brender, P., Valentini, R., 2011. The carbon balance of Africa: synthesis of recent research studies. Phil. Trans. R. Soc. A 369, 2038-2057.
    • Davidson, E.A., Savage, K., Verchot, L.V., Navarro, R., 2002. Minimizing artefacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol. 113, 21-37.
    • Day, J.A., 1993. The major ion chemistry of some southern African saline systems. Hydrobiologia 267, 31-59.
    • De Wit, P.V., Nachtergaele, F.O., 1990. Explanatory Note on the Soil Map of the Republic of Botswana. Republic of Botswana: Food and Agriculture Organisation of the United Nations, UNDP, Nairobi (33 pp.).
    • Dean, W.E., 1999. The carbon cycle and biogeochemical dynamics in lake sediments. J. Paleolimnol. 21, 375-393.
    • Department of Environmental Affairs and Centre for Applied Research, 2010. The Makgadikgadi Framework Management Plan. Government of Botswana, Gaborone.
    • Dupraz, C., Visscher, P.T., Baumgartner, I.K., Reid, R.P., 2004. Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51, 745-765.
    • Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae, M.O., Pöschl, U., 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5, 459-462.
    • Emmerich, W.E., 2003. Carbon dioxide fluxes in semiarid environment with carbonate soils. Agric. For. Meteorol. 116, 91-102.
    • Gould, D., 1986. Brines of Sowa Pan and adjacent areas, Botswana. Mineral Deposits of Southern Africa, I and II, pp. 2289-2299.
    • Heuer, V.B., Pohlman, J.W., Torres, M.E., Elvert, M., Hinrichs, K.-U., 2009. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochim. Cosmochim. Acta 73, 3323-3336.
    • Hoon, S.R., Thomas, A.D., Linton, P.E., 2009. Design and development of an in-situ closed chamber for quantification of soil photosynthesis and respiration. Geogr. Res. 47, 71-82.
    • Jellison, R., Anderson, R.F., Melack, J.M., Heil, D., 1996. Organic matter accumulation in sediments of hypersaline Mono Lake during a period of changing salinity. Limnol. Oceanogr. 41 (7), 1539-1544.
    • Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H., Shurpali, N.J., Martikainen, P.J., Alm, J., Wilmking, M., 2007. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences 4, 1005-1025.
    • Lal, R., 2009. The Potential for Soil Carbon Sequestration. International Food Policy Research Institute, Washington, D.C.
    • Lebogang, L., Taylor, J.E., Mubyana-John, T., 2009. A preliminary study of the fungi associated with saltpans in Botswana and their anti-microbial properties. Bioremediation, Biodiversity and Bioavailability, 3(2). Global Science Books, pp. 61-71.
    • Loeppert, R.H., Suarez, D.L., 1996. Carbonate and gypsum, In: Sparks, D.L., et al. (Eds.), Methods of Soil Analysis. Part 3, 3rd edition. . SSSA Book Series No. 5, ASA and SSSA, Madison, WI, pp. 437-474.
    • McCulloch, G.P., Irvine, K., Eckardt, F.D., Bryant, R., 2008. Hydrochemical fluctuations and crustacean community composition in an ephemeral saline lake (Sua Pan, Makgadikgadi Botswana). Hydrobiologia 596, 31-46.
    • Mees, F., Van Ranst, E., 2011. Euhedral sparitic calcite in buried surface horizons in lake basins, southwestern Kalahari, Namibia. Geoderma 163, 109-118.
    • Mörner, N.-A., Etiope, G., 2002. Carbon degassing from the lithosphere. Glob. Planet. Chang. 33, 185-203.
    • Porra, R.J., 1990. A simple method for extracting chlorophylls from the recalcitrant alga, Nannochloris atomus, without formation of spectroscopically-different magnesiumrhodochlorin derivatives. Biochim. Biophys. Acta 1019, 137-141.
    • Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesla, T., Niinistö, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I., Yuste, J.C., Grünzweig, J.M., Reth, S., Subke, J.A., Savage, K., Kutsch, W., Østreng, G., Ziegler, W., Anthoni, P., Lindroth, A., Hari, P., 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric. For. Meteorol. 124, 159-176.
    • Ringrose, S., Downey, B., Genecke, D., Sefe, F., Vink, B., 1999. Nature of sedimentary deposits in the western Makgadikgadi Basin, Botswana. J. Arid Environ. 43, 375-397.
    • Ringrose, S., Huntsman-Mapila, P., Kampunzu, A.B.., Downey, W., Coetzee, S., Vink, B., Matheson, W., Vanderpost, C., 2005. Sedimentological and geochemical evidence for palaeo-environmental change in the Makgadikgadi subbasin, in relation to the MOZ rift depression, Botswana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 217, 265-287.
    • Rowell, D.L., 1994. Soil Science: Methods and Applications. Prentice-Hall.
    • Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature 478, 49-56.
    • Schneider, J., le Campion-Alsumard, T., 1999. Construction and destruction of carbonates by marine and freshwater cyanobacteria. Eur. J. Phycol. 34, 417-426.
    • Seaman, M.T., Ashton, P.J., Williams, W.D., 1991. Inland salt waters of southern Africa. Hydrobiologia 210 (1-2), 75-91.
    • Smith, J.M., Green, S.J., Kelley, C.A., Prufert-Bebout, L., Bebout, B.M., 2008. Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat. Environ. Microbiol. 10, 386-394.
    • Thomas, A.D., 2012. Impact of grazing intensity on seasonal variations of soil organic carbon and soil CO2 efflux in two semi-arid grasslands in southern Botswana. Philos. Trans. R. Soc. B 367, 3076-3086.
    • Thomas, A.D., Hoon, S.R., Dougill, A.J., 2011. Soil respiration at five sites along the Kalahari Transect: effects of temperature, precipitation pulses and biological soil crust cover. Geoderma 167-168, 284-294.
    • Wang, L., D'Odorico, P., Ringrose, S., Coetzee, S., Macko, S.A., 2007. Biogeochemistry of Kalahari Sands. J. Arid Environ. 71, 259-279.
    • White, K., Eckardt, F., 2006. Geochemical mapping of carbonate sediments in the Makgadikgadi Basin, Botswana using moderate resolution remote sensing data. Earth Surf. Process. Landf. 31, 665-681.
    • Wright, V.P., Tucker, M.E., 1991. Calcretes. International Association of Sedimentologists, Oxford.
    • Xie, J., Li, Y., Zhai, C., Li, C., Lan, Z., 2009. CO2 adsorption by alkaline soils and its implication to the global carbon cycle. Environ. Geol. 56, 953-961.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article