LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aaij R and others; LHCb collaboration (2013)
Journal: Phys. Lett.
Languages: English
Types: Unknown
Subjects: QC, Particle Physics - Experiment, High Energy Physics - Experiment

Classified by OpenAIRE into

ACM Ref: TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY
A search for CP   violation in the phase-space structures of D0D0 and D¯0 decays to the final states KK+ππ+K−K+π−π+ and ππ+π+ππ−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−11.0 fb−1 collected in 2011 by the LHCb experiment in pp   collisions at a centre-of-mass energy of 7 TeV7 TeV. For the KK+ππ+K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP   asymmetry greater than 6.5% observed. The phase space of the ππ+π+ππ−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S. Bianco, F. Fabbri, D. Benson, I. Bigi, A Cicerone for the physics of charm, Riv. Nuovo Cimento 26 (7) (2003) 1, arXiv:hep-ex/0309021.
    • [2] D.-S. Du, CP violation for neutral charmed meson decays into CP eigenstates, Eur. Phys. J. C 50 (2007) 579, arXiv:hep-ph/0608313.
    • [3] F. Buccella, M. Lusignoli, A. Pugliese, P. Santorelli, CP violation in D meson decays: would it be a sign of new physics?, arXiv:1305.7343.
    • [4] M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild, How large can the SM contribution to CP violation in D0 − D0 mixing be?, J. High Energy Phys. 1003 (2010) 009, arXiv:1002.4794.
    • [5] Y. Grossman, A.L. Kagan, Y. Nir, New physics and CP violation in singly Cabibbo suppressed D decays, Phys. Rev. D 75 (2007) 036008, arXiv:hep-ph/0609178.
    • [6] A.A. Petrov, Searching for new physics with Charm, PoS BEAUTY 2009 (2009) 024, arXiv:1003.0906.
    • [7] LHCb Collaboration, R. Aaij, et al., Search for direct CP violation in D0 → h−h+ modes using semileptonic B decays, Phys. Lett. B 723 (2013) 33, arXiv: 1303.2614.
    • [8] LHCb Collaboration, R. Aaij, et al., Searches for CP violation in the D+ → φπ + and D+s → KS0π + decays, J. High Energy Phys. 1306 (2013) 112, arXiv: 1303.4906.
    • [9] LHCb Collaboration, R. Aaij, et al., Evidence for CP violation in time-integrated D0 → h−h+ decay rates, Phys. Rev. Lett. 108 (2012) 111602, arXiv:1112.0938.
    • [10] CLEO Collaboration, M. Artuso, et al., Amplitude analysis of D0 → K + K −π +π −, Phys. Rev. D 85 (2012) 122002, arXiv:1201.5716.
    • [11] I. Bediaga, et al., On a CP anisotropy measurement in the Dalitz plot, Phys. Rev. D 80 (2009) 096006, arXiv:0905.4233.
    • [12] BaBar Collaboration, B. Aubert, et al., Search for CP violation in neutral D meson Cabibbo-suppressed three-body decays, Phys. Rev. D 78 (2008) 051102, arXiv:0802.4035.
    • [13] LHCb Collaboration, R. Aaij, et al., Search for CP violation in D+ → K − K +π + decays, Phys. Rev. D 84 (2011) 112008, arXiv:1110.3970.
    • [14] LHCb Collaboration, A.A. Alves Jr., et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
    • [15] M. Adinolfi, et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73 (2013) 2431, arXiv:1211.6759.
    • [16] R. Aaij, et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055.
    • [17] W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Methods A552 (2005) 566, arXiv:physics/0503191.
    • [18] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilonprime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.
    • [19] N.L. Johnson, Systems of frequency curves generated by methods of translation, Biometrika 36 (1949) 149.
    • [20] M. Pivk, F.R. Le, Diberder, sPlot: a statistical tool to unfold data distributions, Nucl. Instrum. Methods A555 (2005) 356, arXiv:physics/0402083.
    • [21] FOCUS Collaboration, J. Link, et al., Study of the D0 → π −π +π −π + decay, Phys. Rev. D 75 (2007) 052003, arXiv:hep-ex/0701001.
    • [22] Particle Data Group, J. Beringer, et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001.
    • R. Aaij 40, B. Adeva 36, M. Adinolfi 45, C. Adrover 6, A. Affolder 51, Z. Ajaltouni 5, J. Albrecht 9, F. Alessio 37, M. Alexander 50, S. Ali 40, G. Alkhazov 29, P. Alvarez Cartelle 36, A.A. Alves Jr. 24,37, S. Amato 2, S. Amerio 21, Y. Amhis 7, L. Anderlini 17,f , J. Anderson 39, R. Andreassen 56, J.E. Andrews 57, R.B. Appleby 53, O. Aquines Gutierrez 10, F. Archilli 18, A. Artamonov 34, M. Artuso 58, E. Aslanides 6, G. Auriemma 24,m, M. Baalouch 5, S. Bachmann 11, J.J. Back 47, C. Baesso 59, V. Balagura 30, W. Baldini 16, R.J. Barlow 53, C. Barschel 37, S. Barsuk 7, W. Barter 46, Th. Bauer 40, A. Bay 38, J. Beddow 50, F. Bedeschi 22, I. Bediaga 1, S. Belogurov 30, K. Belous 34, I. Belyaev 30, E. Ben-Haim 8, G. Bencivenni 18, S. Benson 49, J. Benton 45, A. Berezhnoy 31, R. Bernet 39, M.-O. Bettler 46, M. van Beuzekom 40, A. Bien 11, S. Bifani 44, T. Bird 53, A. Bizzeti 17,h, P.M. Bjørnstad 53, T. Blake 37, F. Blanc 38, J. Blouw 11, S. Blusk 58, V. Bocci 24, A. Bondar 33, N. Bondar 29, W. Bonivento 15, S. Borghi 53, A. Borgia 58, T.J.V. Bowcock 51, E. Bowen 39, C. Bozzi 16, T. Brambach 9, J. van den Brand 41, J. Bressieux 38, D. Brett 53, M. Britsch 10, T. Britton 58, N.H. Brook 45, H. Brown 51, I. Burducea 28, A. Bursche 39, G. Busetto 21,q, J. Buytaert 37, S. Cadeddu 15, O. Callot 7, M. Calvi 20,j, M. Calvo Gomez 35,n, A. Camboni 35,
    • [1] S. Bianco, F. Fabbri, D. Benson, I. Bigi, A Cicerone for the physics of charm, Riv. Nuovo Cimento 26 (7) (2003) 1, arXiv:hep-ex/0309021.
    • [2] D.-S. Du, CP violation for neutral charmed meson decays into CP eigenstates, Eur. Phys. J. C 50 (2007) 579, arXiv:hep-ph/0608313.
    • [3] F. Buccella, M. Lusignoli, A. Pugliese, P. Santorelli, CP violation in D meson decays: would it be a sign of new physics?, arXiv:1305.7343.
    • [4] M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild, How large can the SM contribution to CP violation in D0 − D0 mixing be?, J. High Energy Phys. 1003 (2010) 009, arXiv:1002.4794.
    • [5] Y. Grossman, A.L. Kagan, Y. Nir, New physics and CP violation in singly Cabibbo suppressed D decays, Phys. Rev. D 75 (2007) 036008, arXiv:hep-ph/0609178.
    • [6] A.A. Petrov, Searching for new physics with Charm, PoS BEAUTY 2009 (2009) 024, arXiv:1003.0906.
    • [7] LHCb Collaboration, R. Aaij, et al., Search for direct CP violation in D0 → h−h+ modes using semileptonic B decays, Phys. Lett. B 723 (2013) 33, arXiv: 1303.2614.
    • [8] LHCb Collaboration, R. Aaij, et al., Searches for CP violation in the D+ → φπ + and D+s → KS0π + decays, J. High Energy Phys. 1306 (2013) 112, arXiv: 1303.4906.
    • [9] LHCb Collaboration, R. Aaij, et al., Evidence for CP violation in time-integrated D0 → h−h+ decay rates, Phys. Rev. Lett. 108 (2012) 111602, arXiv:1112.0938.
    • [10] CLEO Collaboration, M. Artuso, et al., Amplitude analysis of D0 → K + K −π +π −, Phys. Rev. D 85 (2012) 122002, arXiv:1201.5716.
    • [11] I. Bediaga, et al., On a CP anisotropy measurement in the Dalitz plot, Phys. Rev. D 80 (2009) 096006, arXiv:0905.4233.
    • [12] BaBar Collaboration, B. Aubert, et al., Search for CP violation in neutral D meson Cabibbo-suppressed three-body decays, Phys. Rev. D 78 (2008) 051102, arXiv:0802.4035.
    • [13] LHCb Collaboration, R. Aaij, et al., Search for CP violation in D+ → K − K +π + decays, Phys. Rev. D 84 (2011) 112008, arXiv:1110.3970.
    • [14] LHCb Collaboration, A.A. Alves Jr., et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
    • [15] M. Adinolfi, et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73 (2013) 2431, arXiv:1211.6759.
    • [16] R. Aaij, et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055.
    • [17] W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Methods A552 (2005) 566, arXiv:physics/0503191.
    • [18] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilonprime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.
    • [19] N.L. Johnson, Systems of frequency curves generated by methods of translation, Biometrika 36 (1949) 149.
    • [20] M. Pivk, F.R. Le, Diberder, sPlot: a statistical tool to unfold data distributions, Nucl. Instrum. Methods A555 (2005) 356, arXiv:physics/0402083.
    • [21] FOCUS Collaboration, J. Link, et al., Study of the D0 → π −π +π −π + decay, Phys. Rev. D 75 (2007) 052003, arXiv:hep-ex/0701001.
    • [22] Particle Data Group, J. Beringer, et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001.
    • R. Aaij 40, B. Adeva 36, M. Adinolfi 45, C. Adrover 6, A. Affolder 51, Z. Ajaltouni 5, J. Albrecht 9, F. Alessio 37, M. Alexander 50, S. Ali 40, G. Alkhazov 29, P. Alvarez Cartelle 36, A.A. Alves Jr. 24,37, S. Amato 2, S. Amerio 21, Y. Amhis 7, L. Anderlini 17,f , J. Anderson 39, R. Andreassen 56, J.E. Andrews 57, R.B. Appleby 53, O. Aquines Gutierrez 10, F. Archilli 18, A. Artamonov 34, M. Artuso 58, E. Aslanides 6, G. Auriemma 24,m, M. Baalouch 5, S. Bachmann 11, J.J. Back 47, C. Baesso 59, V. Balagura 30, W. Baldini 16, R.J. Barlow 53, C. Barschel 37, S. Barsuk 7, W. Barter 46, Th. Bauer 40, A. Bay 38, J. Beddow 50, F. Bedeschi 22, I. Bediaga 1, S. Belogurov 30, K. Belous 34, I. Belyaev 30, E. Ben-Haim 8, G. Bencivenni 18, S. Benson 49, J. Benton 45, A. Berezhnoy 31, R. Bernet 39, M.-O. Bettler 46, M. van Beuzekom 40, A. Bien 11, S. Bifani 44, T. Bird 53, A. Bizzeti 17,h, P.M. Bjørnstad 53, T. Blake 37, F. Blanc 38, J. Blouw 11, S. Blusk 58, V. Bocci 24, A. Bondar 33, N. Bondar 29, W. Bonivento 15, S. Borghi 53, A. Borgia 58, T.J.V. Bowcock 51, E. Bowen 39, C. Bozzi 16, T. Brambach 9, J. van den Brand 41, J. Bressieux 38, D. Brett 53, M. Britsch 10, T. Britton 58, N.H. Brook 45, H. Brown 51, I. Burducea 28, A. Bursche 39, G. Busetto 21,q, J. Buytaert 37, S. Cadeddu 15, O. Callot 7, M. Calvi 20,j, M. Calvo Gomez 35,n, A. Camboni 35,
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | EGI-INSPIRE
  • SNSF | High Precision CP Violatio...

Related to

  • egiEGI virtual organizations: lhcb
  • egiEGI Projects: EGI-InSPIRE

Cite this article