LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Giofré, D; Mammarella, IC
Publisher: Elsevier
Languages: English
Types: Article
Subjects: RC0321, BF
Different procedures have been proposed for scoring working memory (WM) tasks. The Absolute Credit Score (ACS) only considers performance in perfectly recalled trials, while the Partial Credit Score (PCS) considers imperfectly recalled ones too. Research indicates that different relationships between WM and general intelligence (the g-factor) may emerge using the ACS or the PCS. We reanalyzed the ACS and PCS obtained in a sample of 176 children in the 4th and 5th grades, and found that the PCS strengthened the relationship between WM and intelligence, and the relationships between visuospatial short-term memory (STM-VS), active WM and intelligence. When the number of items to be remembered (set size) was considered, however, the PCS only strengthened the relationship between STM-VS, active WM and intelligence in the case of larger set sizes. Practical and theoretical implications of these findings are discussed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Carretti, B., Borella, E., Cornoldi, C., & De Beni, R. (2009). Role of working memory in explaining poor comprehenders performance: A meta-analysis. Learning and Individual Differences, 19, 246-251. doi:10.1016/j.lindif.2008.10.002
    • Caviola, S., Mammarella, I. C., Cornoldi, C., & Lucangeli, D. (2009). A metacognitive visuospatial working memory training for children. International Electronic Journal of Elementary Education, 2, 122-136.
    • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.
    • Colom, R., Abad, F. J., Rebollo, I., & Shih, P. C. (2005). Memory span and general intelligence: A latent-variable approach. Intelligence, 33(6), 623-642. doi:10.1016/j.intell.2005.05.006
    • Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user's guide. Psychonomic Bulletin & Review, 12(5), 769-786. doi:10.3758/BF03196772
    • Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547-552. doi:10.1016/j.tics.2003.10.005
    • Cornoldi, C., Giofrè, D., Calgaro, G., & Stupiggia, C. (2013). Attentional WM is not necessarily specifically related with fluid intelligence: the case of smart children with ADHD symptoms. Psychological Research, 77(4), 508-515. doi:10.1007/s00426-012-0446-8
    • Cornoldi, C., Giofrè, D., Orsini, A., & Pezzuti, L. (2014). Differences in the intellectual profile of children with intellectual vs. learning disability. Research in Developmental Disabilities, 35(9), 2224-2230. doi:10.1016/j.ridd.2014.05.013
    • Cornoldi, C., Orsini, A., Cianci, L., Giofrè, D., & Pezzuti, L. (2013). Intelligence and working memory control: Evidence from the WISC-IV administration to Italian children. Learning and Individual Differences, 26, 9-14. doi:10.1016/j.lindif.2013.04.005
    • Cornoldi, C., & Vecchi, T. (2003). Visuo-spatial working memory and individual differences. Hove: Psychology Pr.
    • Cowan, N., Elliott, E. M., Scott Saults, J., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. A. (2005). On the capacity of attention: its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51(1), 42-100. doi:10.1016/j.cogpsych.2004.12.001
    • Cowan, N., Fristoe, N. M., Elliott, E. M., Brunner, R. P., & Saults, J. S. (2006). Scope of attention, control of attention, and intelligence in children and adults. Memory & Cognition, 34(8), 1754-68. doi:10.3758/BF03195936
    • Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450-466. doi:10.1016/S0022- 5371(80)90312-6
    • De Beni, R., Palladino, P., Pazzaglia, F., & Cornoldi, C. (1998). Increases in intrusion errors and working memory deficit of poor comprehenders. The Quarterly Journal of Experimental Psychology, 51(2), 305-20. doi:10.1080/713755761
    • Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13-21. doi:10.1016/j.intell.2006.02.001
    • Demetriou, A., Efklides, A., & Platsidou, M. (1993). The architecture and dynamics of developing mind: Experiential structuralism as a frame for unifying cognitive developmental theories. Monographs of the Society for Research in Child Development, 58, v-167.
    • Demetriou, A., Spanoudis, G., & Shayer, M. (2013). Developmental intelligence: From empirical to hidden constructs. Intelligence, 41(5), 744-749. doi:10.1016/j.intell.2013.07.014
    • Demetriou, A., Spanoudis, G., Shayer, M., Mouyi, A., Kazi, S., & Platsidou, M. (2013). Cycles in speed-working memory-G relations: Towards a developmental-differential theory of the mind. Intelligence, 41(1), 34-50. doi:10.1016/j.intell.2012.10.010
    • Demetriou, A., Spanoudis, G., Shayer, M., van der Ven, S., Brydges, C. R., Kroesbergen, E., … Swanson, H. L. (2014). Relations between speed, working memory, and intelligence from preschool to adulthood: Structural equation modeling of 14 studies. Intelligence, 46, 107-121. doi:10.1016/j.intell.2014.05.013
    • Engel De Abreu, P. M. J., Conway, A. R. A., & Gathercole, S. E. (2010). Working memory and fluid intelligence in young children. Intelligence, 38(6), 552-561. doi:10.1016/j.intell.2010.07.003
    • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309-331. doi:10.1037/0096-3445.128.3.309
    • Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177-90. doi:10.1037/0012-1649.40.2.177
    • Giofrè, D., Mammarella, I. C., & Cornoldi, C. (2013). The structure of working memory and how it relates to intelligence in children. Intelligence, 41(5), 396-406. doi:10.1016/j.intell.2013.06.006
    • Giofrè, D., Mammarella, I. C., & Cornoldi, C. (2014). The relationship between geometry, working memory and intelligence in children. Journal of Experimental Child Psychology, 123, 112- 128. doi:10.1016/j.jecp.2014.01.002
    • Giofrè, D., Mammarella, I. C., Ronconi, L., & Cornoldi, C. (2013). Visuospatial working memory in intuitive geometry, and in academic achievement in geometry. Learning and Individual Differences, 23, 114-122. doi:10.1016/j.lindif.2012.09.012
    • Gottfredson, L. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24(1), 13-23. doi:10.1016/S0160-2896(97)90011-8
    • Hoerger, M. (2013). ZH: An updated version of Steiger's Z and web-based calculator for testing the statistical significance of the difference between dependent correlations. Retrieved from http://www.psychmike.com/dependent_correlations.php
    • Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57(5), 253-270. doi:10.1037/h0023816
    • Hornung, C., Brunner, M., Reuter, R. A. P., & Martin, R. (2011). Children's working memory: Its structure and relationship to fluid intelligence. Intelligence, 39(4), 210-221. doi:10.1016/j.intell.2011.03.002
    • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55. doi:10.1080/10705519909540118
    • Jöreskog, K. G., & Sörbom, D. (2002). PRELIS 2 User's Reference Guide. (Third Edit.). Lincolnwood, IL: Scientific Software International.
    • Jöreskog, K. G., & Sörbom, D. (2006). LISREL for Windows [Computer software]. Lincolnwood, IL: Scientific Software International.
    • Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131(1), 66-71; Author's reply 72-5. doi:10.1037/0033-2909.131.1.66
    • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14(4), 389-433. doi:10.1016/S0160-2896(05)80012-1
    • Mammarella, I. C., Borella, E., Pastore, M., & Pazzaglia, F. (2013). The structure of visuospatial memory in adulthood. Learning and Individual Differences, 25, 99-110. doi:10.1016/j.lindif.2013.01.014
    • Mammarella, I. C., Pazzaglia, F., & Cornoldi, C. (2008). Evidence for different components in children's visuospatial working memory. British Journal of Developmental Psychology, 26(3), 337-355. doi:10.1348/026151007X236061
    • Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. Journal of American Academy of Child & Adolescent Psychiatry, 44, 377-384. doi:10.1097/01
    • Palladino, P. (2005). Uno strumento per esaminare la memoria di lavoro verbale in bambini di scuola elementare: taratura e validità [A test for examining WM in primary school: Standardization and validity]. Psicologia Clinica Dello Sviluppo, (25), 129-150. doi:10.1449/20152
    • Pascual-Leone, J. (1970). A mathematical model for the transition rule in Piaget's developmental stages. Acta Psychologica, 32, 301-345. doi:10.1016/0001-6918(70)90108-3
    • Passolunghi, M. C., Mammarella, I. C. & Altoè, G. M. (2008). Cognitive abilities as precursors of the early acquisition of mathematical skills. Developmental Neuropsychology, 33, 229-250. doi:10.1080/87565640801982320
    • Raven, J., Raven, J. C., & Court, J. H. (1998). Raven manual, section 2 (coloured progressive matrices). Oxford, England: Oxford Psychologist Press.
    • Swanson, H. L., & Siegel, L. S. (2001). Learning disabilities as a working memory deficit. Issues in Education: Contributions for Educational Psychology, 7, 1-48.
    • Salthouse, T. A., & Pink, J. E. (2008). Why is working memory related to fluid intelligence? Psychonomic Bulletin & Review, 15(2), 364-71. doi:10.3758/PBR.15.2.364
    • Schmidt, F. L., & Hunter, J. (2004). General mental ability in the world of work: occupational attainment and job performance. Journal of Personality and Social Psychology, 86(1), 162-73. doi:10.1037/0022-3514.86.1.162
    • Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2), 245-251. doi:10.1037/0033-2909.87.2.245
    • Thurstone, L. L., & Thurstone, T. G. (1963). Primary mental abilities. Chicago, IL: Science Research.
    • Träff, U. (2013). The contribution of general cognitive abilities and number abilities to different aspects of mathematics in children. Journal of Experimental Child Psychology, 116(2), 139- 156. doi:10.1016/j.jecp.2013.04.007
    • Unsworth, N., & Engle, R. W. (2006). Simple and complex memory spans and their relation to fluid abilities: Evidence from list-length effects. Journal of Memory and Language, 54(1), 68-80. doi:10.1016/j.jml.2005.06.003
    • Unsworth, N., & Engle, R. W. (2007). On the division of short-term and working memory: An examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133(6), 1038-66. doi:10.1037/0033-2909.133.6.1038
    • Figure 1. Means of the proportions of correctly-recalled items in STM-V, STM-VS and WM. Error
    • bars represent 95% CIs of the mean.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article