LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mouchliadis, Leonidas
Languages: English
Types: Doctoral thesis
Subjects: QC

Classified by OpenAIRE into

arxiv: Condensed Matter::Quantum Gases, Condensed Matter::Other, Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
This dissertation consists of a theoretical investigation into the transport and coherence properties of indirect excitons in coupled quantum wells (QWs) at helium temperatures. The motion of excitons along the quantum well plane is described through a quantum diffusion equation and the possibility of excitonic cloud formation is studied both due to the natural potential fluctuations and externally applied confining potentials. The photoluminescence (PL) of decaying excitons is used as a probe for their properties such as concentration, effective temperature and optical lifetime. The exciton thermalisation from an initial high energy to the lattice temperature is achieved within their lifetime due to a very effective coupling between the exciton states and a continuum of phonon states, a direct consequence of the relaxation of momentum conservation along the growth direction of a QW. Moreover, the natural spatial separation between electrons and holes prevents their recombination, resulting in long lifetimes. The dynamics of the system of excitons in optically-induced traps is also studied and the numerical solution of the quantum diffusion equation provides an insight into the extremely fast loading times of the trap with a highly degenerate exciton gas. The hierarchy of timescales in such a trap allows for the creation of a cold and dense gas confined within the trap, opening a new route towards the long sought Bose-Einstein Condensation (BEC) in solid state. Finally the issue of exciton spatial coherence is studied and an analytic expression for the coherence function, i.e., the measure of the coherence in a system, is derived. A direct comparison with large coherence lengths recently observed in systems of quantum well excitons and microcavity polaritons is attempted and interesting conclusions are drawn regarding the build up of spontaneous coherence in these systems.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 5.1 Formation of Exciton Rings in Quantum W e l ls ................................................
    • 5.2 Optical Trapping of Indirect Excitons ..............................................................
    • 5.3 Spatial Coherence of E xcitons.............................................................................
    • 5.4 Future Work ......................................................................................................... A D erivation of the generalised Einstein relation
    • A.0.1 The Einstein relation...............................................................................
    • A.0.2 The generalised Einstein re la tio n ......................................................... B Calculation of th e capture coefficient
    • B.0.3 The matrix element of the in te ra c tio n ................................................ 1.1 An idealised band structure of a direct-gap sem iconductor............................ 1.2 Energy band diagrams of a coupled quantum well s tr u c tu re ......................... 1.3 The photon and exciton dispersion relations..................................................... 1.4 A schematic diagram of the structure................................................................. 2.1 Spatial patterns of the indirect exciton PL intensity with increasing excitation
    • power [1]................................................................................................................. 34
    • 2.2 Spatial profiles of the PL signal in the x -y and E -x plane [2] 35
    • 2.3 The effective potential profile as a function of the distance from the current
    • filament c e n t r e ..................................................................................................... 39
    • 2.4 Comparison between the quantum mass action law and the Saha formula for
    • the exciton concentration as a function of temperature.................................... 43
    • 2.5 The concentration of electrons around the filament centre for four different
    • generation rates. At a distance of 10/mi the photogenerated carriers are
    • scarce and the electron density depends only on the electrically injected carriers. 46
    • 2.6 The effective temperature as a function of the radial distance from the anti-
    • perature drops the exciton concentration reaches a maximum........................ 47
    • 2.7 Experimental plots of the PL intensity and energy of indirect excitons around
    • the anti-trap. [3]..................................................................................................... 48
    • 2.8 Theoretical plots of the PL intensity and energy of indirect excitons around
    • the anti-trap............................................................................................................ 49
    • 2.9 A plot of the actual voltage drop across the QW active region as a function
    • of the total electric current flowing through the QW........................................ 50
    • 3.1 The profile of the laser intensity used in optical tra p s ..................................... 3.2 Spatial profiles of the measured PL intensity from excitons created by a ring-
    • shaped laser excitation in the x -y and E x p la n e ........................................... 3.3 Time resolved images of laser-induced trapping of excitons............................ 3.4 Temporal evolution of the exciton density, PL intensity, diffusion coefficient
    • and ground state occupation number, after the creation of the optical trap. 3.5 Temporal evolution of the calculated exciton concentration in the x-y plane,
    • after the laser pulse is switched on...................................................................... 3.6 Temporal evolution of the exciton density, PL intensity, diffusion coefficient
    • and ground state occupation number, after removal of the optical trap. . . . 3.7 Temporal evolution of the calculated exciton concentration in the x-y plane,
    • after the laser pulse is switched off...................................................................... 3.8 The effective exciton temperature as a function of the radial coordinate for
    • various delay times both during the pulse and after its termination.............. [1] L. V. Butov, A. C. Gossard and D. S. Chemla. Macroscopically ordered state
    • in an exciton system. Nature, 418, 751 (2002). [2] A. L. Ivanov, L. E. Smallwood, A. T. Hammack, S. Yang, L. V. Butov and A. C.
    • well excitons. Europhys. Lett., 73, 920 (2006). [3] C. W. Lai. Spatially Indirect Excitons in Coupled Q uantum Wells. Ph.D . thesis,
    • University of California, Berkeley (2004). [4] C. Kittel. Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996). [5] D. L. Dexter and R. S. Knox. Excitons (Wiley, New York, 1965). [6 ] J. Frenkel. On the transform ation of light into h eat in solids. I. Phys. Rev., 37,
    • 17 (1931). [7] J. Frenkel. On the transform ation of light into h eat in solids. II. Phys. Rev.,
    • 37, 1276 (1931). [8 ] G. H. Wannier. The structure of electronic excitation levels in insulating crys­
    • tals. Phys. Rev., 52, 191 (1937). [9] N. F. M ott. Conduction in polar crystals. II. th e conduction band and u ltra­
    • violet absorption of alkali-halide crystals. Trans. Faraday Soc., 34, 500 (1938). [10] E. Burstein and C. Weisbuch, editors. Confined Electrons and Photons - New
    • Physics and Devices (Plenum Press, New York, 1995). [11] P. Y. Yu and M. Cardona. Fundamendals o f semicontuctors: physics and ma­
    • terial properties (Springer, Berlin, 2001). [12] R. C. Miller, D. A. Kleinman, W. T. Tsang and A. C. Gossard. Observation
    • of the excited level of excitons in gaas quantum wells. Phys. Rev. B , 24, 1134
    • (1981). [13] G. Bastard, E. E. Mendez, L. L. Chang and L. Esaki. Exciton binding energy
    • in quantum wells. Phys. Rev. B , 26, 1974 (1982). [14] R. L. Greene, K. K. Bajaj and D. E. Phelps. Energy levels of W annier excitons
    • in G aA s-G ai_xAlxAs quantum-well structures. Phys. Rev. B , 29, 1807 (1984). [15] S. Charbonneau, M. L. W. Thewalt, E. S. Koteles and B. Elman. Transforma­
    • wells. Phys. Rev. B , 38, 6287 (1988). [16] Y. E. Lozovik and I. V. Ovchinnikov. Controlling spatially indirect exciton
    • State Commun., 118, 251 (2001). [17] J. E. Golub, K. Kash, J. P. Haribson and L. T. Florez. Long-lived spatially
    • 41, 8564 (1990). [18] A. Alexandrou, J. A. Kash, E. E. Mendez, M. Zachau, J. M. Hong, T. Fukuzawa
    • GaAs/Alo.3Gao.7As double quantum wells. Phys. Rev. B , 42, 9225 (1990). [19] A. V. Larionov, V. B. Timofeev, J. Hvam and K. Soerensen. Interwell excitons
    • 90, 1093 (2000). [20] P. Nozieres and C. Comte. Exciton Bose condensation: th e ground of an
    • (Paris), 43, 1083 (1982). [21] K. Huang. Statistical Mechanics (Wiley, New York, 1987). [22] L. D. Landau and E. M. Lifshitz. Statistical Physics Vol. 5: Course o f Theoret­
    • ical Physics (Pergamon Press, 1980). [23] S. A. Moskalenko and D. W. Snoke. Bose-E instein condensation o f excitons
    • and biexcitons (Cambridge University Press, 2000). [25] A. Einstein. Sitzber. Kgl. Preuss. Akad. Wiss., page 261 (1924). [26] M. H. Anderson, J. R. Ensher, M. R. M atthews, C. E. W ieman and E. A.
    • Science, 269, 198 (1995). [27] K. B. Davis, M. O. Mewes, M. A. Joffe, M. R. Andrews and W. Ketterle.
    • Evaporative cooling of sodium atoms. Phys. Rev. Lett., 74, 5202 (1995). [28] E. A. Cornell and C. E. W ieman. Nobel Lecture: Bose-Einstein condensation in
    • a dilute gas, th e first 70 years and some recent experiments. Rev. Mod. Phys.,
    • 74, 875 (2002). [29] G. M odugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni and M. Ingus-
    • Science, 294, 1320 (2001). [30] C. C. Bradley, C. A. Sackett, J. J. Toilet and R. G. Hulet. Evidence of Bose-
    • Lett., 75, 1687 (1995). [31] A. Griffin, D. W . Snoke and S. Stringari, editors. Bose-Einstein Condensation
    • (Cam bridge University Press, 1995). [32] T. W eber, J. Herbig, M. Mark, H. C. Nagerl and R. Grimm. Bose-Einstein
    • condensation of cesium. Science, 299, 232 (2003). [33] D. G. Fried, T . C. Killian, L. W illmann, D. Landhuis, S. C. Moss, D. Kleppner
    • Lett., 81, 3811 (1998). [34] S. A. Moskalenko. Reversible optico-hydrodynamic phenomena in a nonideal
    • exciton gas. Fiz. Tverd. Tela, 4, 276 (1962). [35] J. M. B la tt, K. W. Boer and W. B randt. Bose-Einstein condensation of excitons.
    • Phys. Rev., 126, 1691 (1962). [36] L. V. Keldysh and A. N. Kozlov. Collective properties of excitons in semicon­
    • ductors. Sov. Phys. JE T P , 27, 521 (1968). [37] D. Hulin, A. Mysyrowciz and C. B. a la Guillaume. Evidence for Bose-Einstein
    • statistics in an exciton gas. Phys. Rev. Lett., 45, 1970 (1980). [38] D. Snoke, J. P. Wolfe and A. Mysyrowicz. Q uantum saturation of a Bose gas:
    • Excitons in C u2 0 . Phys. Rev. Lett., 59, 827 (1987). [39] D. W. Snoke, J. P. Wolfe and A. Mysyrowicz. Evidence for Bose-Einstein
    • condensation of a two-component exciton gas. Phys. Rev. Lett., 64, 2543 (1990). [40] M. Hasuo, N. Nagasawa, T. Itoh and A. Mysyrowicz. Progress in the Bose-
    • Einstein condesation of biexcitons in CuCl. Phys. Rev. Lett., 70, 1303 (1993). [41] E. Fortin, S. Fafard and A. Mysyrowicz. Exciton transport in Cu20 : Evidence
    • for excitonic superfluidity? Phys. Rev. Lett., 70, 3951 (1993). [42] T. Goto, M. Y. Shen, S. Koyama and T. Yokouchi. Bose-Einstein statistics of
    • Phys. Rev. B, 55, 7609 (1997). [43] G. M. Kavoulakis, G. Baym and J. P. Wolfe. Q uantum saturation and con­
    • densation of excitons in C u20 : A theoretical study. Phys. Rev. B, 53, 7227
    • (1996). [44] G. M. Kavoulakis and A. Mysyrowicz. Auger decay, spin exchange, and their
    • connection to Bose-Einstein condensation of excitons in Cu20 . Phys. Rev. B,
    • 61, 16619 (2000). [45] M. Kuwata-Gonokami, M. Kubouchi, R. Shimano and A. Mysyrowicz. Time-
    • resolved excitonic Lym an spectroscopy of Cu2 0 . J. Phys. Soc. Japan, 73, 1065
    • (2003). [46] K. Johnsen and G. M. Kavoulakis. Bose-Einstein condensation of excitons with
    • electrom agnetic radiation. Phys. Rev. Lett., 8 6 , 858 (2001). [47] M. Nagai, R. Shimano, K. Horiuchi and M. Kuwata-Gonokami. Creation of su­
    • Phys. Rev. B, 6 8 , 081202(R) (2003). [48] C. Ell, A. L. Ivanov and H. Haug. Relaxation kinetics ofa low-densityexciton
    • gas in Cu2 0 . Phys. Rev. B, 57, 9663 (1998). [49] A. L. Ivanov, C. Ell and H. Haug. Phonon-assisted Boltzmann kinetics of a
    • Bose gas: Generic solution for T < Tc. Phys. Rev. E, 55, 6363 (1997). [50] J. P. Wolfe and J. I. Jang. New perspectives on kinetics
    • Solid State Commun., 134, 143 (2005). [51] K. E. O 'H ara, L. O. Suilleabhain and J. P. Wolfe. Strong non-radiative recom­
    • bination of excitons in CU2 O and its im pact on Bose-Einstein statistics. Phys.
    • Rev. B, 60, 10565 (1999). [52] A. Swarup and B. Cowan. Fermi-Bose correspondence and Bose-Einstein con­
    • densation in th e two-dimensional ideal gas. J. Low Temp. Phys., 134, 881
    • (2004). [53] V. B agnato and D. Kleppner. Bose-Einstein condensation in low-dimensional
    • traps. Phys. Rev. A, 44, 7439 (1991). [54] W. K etterle and N. J. van D ruten. Bose-Einstein condensation of a finite num­
    • ber of particles trap p ed in one or three dimensions. Phys. Rev. A, 54, 656
    • (1996). [55] V. L. Berezinskii. D estruction of long-range order in one-dimensional and two-
    • tems. Soviet Physics J E T P , 34, 610 (1972). [56] J. M. K osterlitz and D. J. Thouless. Ordering, m etastability and phase transi­
    • tions in two-dim ensional systems. J. Phys. C, 6 , 1181 (1973). [57] P. Roussignol, C. Delalande, A. Vinattieri, L. Carraresi and M. Colocci. Dy­
    • B, 45, 6965 (1992). [58] M. H. Zhang, Q. Huang and J. M. Zhou. Calculations of the time taken for
    • excitons to form in GaAs quantum wells. J. Phys.: Condens, M atter, 9, 10185
    • (1997). [59] T. C. D am en, J. Shah, D. Y. Oberli, D. S. Chemla, J. E. Cunningham and
    • wells. Phys. Rev. B, 42, 7434 (1990). [60] P. W. M. Blom, P. J. van Hall, C. Smit and J. P. C. andJ H Wolter. Selective
    • 71, 3878 (1993). 16I] D. R obart, X. Marie, B. Baylac, T. Amand, M. Brousseau, G. Bacquet, G. De-
    • free carriers in quantum wells. Solid State Commun., 95, 287 (1995). [62] R. K um ar, A. S. Vengurlekar, S. S. P rabh u, J. Shah and L. N. Pfeiffer. Picosec­
    • wells. Phys. Rev. B , 54, 4891 (1996). [63] J. Kusano, Y. Segawa, Y. Aoyagi, S. N am ba and H. Okamoto. Extremely slow
    • Phys. Rev. B, 40, 1685 (1989). [64] A. T hilagam and J. Singh. G eneration rate of 2D excitons in quantum wells.
    • J. L um in., 55, 11 (1993). [65] J. Szczytco, L. K appei, J. Berney, F. Morier-Genoud, M. T. Portella-O berli and
    • time-resolved in terb an d luminescence. Phys. Rev. Lett., 93, 137401 (2004). [6 6 ] J. Szczytco, L. K appei, F. M orier-Genoud, T. Guillet, M. T. Portella-O berli
    • sol. (c), 1, 493 (2004). [74] E. H anam ura. R apid radiative decay and enhanced optical nonlinearity of ex­
    • citons in a qu antum well. Phys. Rev. B , 38, 1228 (1988). [75] L. C. A ndreani, F. Tassone and F. Bassani. Radiative lifetime of free excitons
    • in q u an tu m wells. Solid State C om m un., 77, 641 (1990). [76] G. Bjork, S. P au, J. Jacobson and Y. Yamamoto. Wannier exciton superradi­
    • ance in a quantum -w ell microcavity. Phys. Rev. B , 50, 17336 (1994). [77] D. S. C itrin. R adiative lifetimes of excitons in quantum wells: Localization and
    • phase coherence effects. Phys. Rev. B , 47, 3832 (1993). [78] A. V. Soroko, A. L. Ivanov and L. V. Butov. Therm alization and photolumi­
    • coupled q u an tu m wells. Phys. stat. sol. (a), 190, 719 (2002). [79] L. V. B utov, A. L. Ivanov, A. Imamoglu, P. B. Littlewood, A. A. Shashkin,
    • gas of excitons. Phys. Rev. Lett., 8 6 , 5608 (1998). [80] U. Bockelm ann, G. A bstreiter, G. Weimann and W. Schlapp. Single-particle
    • Phys. Rev. B , 41, 7864 (1990). [81] H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka and T. Matsusue. Interface
    • roughness scatterin g in G aA s/A lA s quantum wells. Appl. Phys. Lett., 51, 1934
    • (1987). [8 6 ] H. W. Yoon, D. R. Wake, J. P. Wolfe and H. Morkog. In-plane transport of
    • photoexcited carriers in GaAs quantum wells. Phys. Rev. B , 46, 13461 (1992). [8 8 ] G. D. Gilliland, M. S. Petrovic, H. P. Hjalmarson, D. J. Wolford, G. A.
    • GaAs structures. Phys. Rev. B, 58, 4728 (1998). [89] M. Achermann, B. A. Nechay, F. M orier-Genoud, A. Schertel, U. Siegner
    • regimes in semiconductor nanostructures. Phys. Rev. B , 60, 2101 (1999). [90] H. Zhao, S. Moehl, S. W achter and H. K alt. Hot exciton tran sp o rt in ZnSe
    • quantum wells. Appl. Phys. Lett., 80, 1391 (2002). [91] H. Zhao, B. D. Don, S. Moehl and H. Kalt. Spatiotem poral dynam ics of
    • quantum-well excitons. Phys. Rev. B, 67, 035306 (2003). [92] Z. Voros, R. Balili, D. W. Snoke, L. Pfeiffer and K. West. Long-distance diffu­
    • sion of excitons in double quantum well structures. Phys. Rev. Lett., 94, 226401
    • (2005). [93] R. Rapaport, G. Chen and S. H. Simon. Nonlinear dynamics of a dense two-
    • dimensional dipolar exciton gas. Phys. Rev. B, 73, 033319 (2006). [94] J. Hegarty, L. Goldner and M. D. Sturge. Localized and delocalized two-
    • Rev. B, 30, R7346 (1984). [95] A. L. Ivanov. Q uantum diffusion of dipole-oriented indirect excitons in coupled
    • quantum wells. Europhys. Lett., 59, 586 (2002). [96] F. Martelli, A. Polimeni, A. Patane, M. Capizzi, P. Borri, M. Gurioli,
    • tuations at the interface of InG aA s/G aA s quantum wells. Phys. Rev. B, 53,
    • 7421 (1996). [97] G. B astard, C. Delalande, M. H. M eynadier, P. M. Frijlink and M. Voos. Low-
    • wells. Phys. Rev. B, 29, 7042 (1984). [98] M. Zachau, J. A. Kash and T. Masselink. Relaxation of excitons in thin quantum
    • wells. Phys. Rev. B, 44, 8403 (1991). [99] H. Hillmer, A. Forchel, S. H ansm ann, M. Morohashi, E. Lopez, H. P. Meier and
    • G aA s/G ai_xAlxAs quantum wells. Phys. Rev. B , 39, 10901 (1989). [100] H. Tang. Influence of interface roughness on excitonic diffusion in semiconductor
    • quantum well. J. Phys.: Condens. M atter, 15, 8137 (2003). [101] L. Schrottke, H. T. G rahn and K. Fujiwara. Excitonic properties of weakly
    • minescence excitation spectroscopy. Phys. Rev. B, 56, 13321 (1997). [102] S. D. Baranovskii, R. Eichmann and P. Thomas. Tem perature-dependent exci­
    • ton luminescence in quantum wells by com puter simulation. Phys. Rev. B , 58,
    • 13081 (1998). [103] L. V. Butov. Condensation and p attern form ation in cold exciton gases in
    • coupled quantum wells. J. Phys.: Condens. Matter, 16, R1577 (2004). [108] J. Lee, E. S. Koteles and M. O. Vassell. Luminescence linewidths of excitons in
    • GaAs quantum wells below 150K. Phys. Rev. B, 33, 5512 (1986). [111] M. Neuberger. III-V Semiconducting compounds (Plenum , New York, 1971). [112] L. R. Weisberg and J. Blanc. M easurements of the density of gaas. J. Appl.
    • Phys., 34, 1002 (1963). [113] A. V. Soroko and A. L. Ivanov. Phonon-assisted relaxation kinetics of statis­
    • tically degenerate excitons in high-quality quantum wells. Phys. Rev. B , 65,
    • 165310 (2002). [114] D. Snoke, S. Denev, Y. Liu, L. Pfeiffer and K. West. Long-range tran sp o rt in
    • excitonic dark states in coupled quantum wells. Nature, 418, 754 (2002). [115] A. V. Larionov, V. B. Timofeev, P. A. Ni, S. V. Dubonos, J. Hvam and K. So-
    • Letters, 75, 570 (2002). [116] R. Rapaport, G. Chen, D. Snoke, S. H. Simon, L. Pfeiffer, K. West, Y. Liu
    • mechanism for exciton ring p attern formation. Phys. Rev. Lett., 92, 117405
    • (2004). [117] A. M. Turing. The chemical basis of morphogenesis. Philos. Trans. R. Soc.
    • London B, 327, 37 (1952). [120] A. A. Chernyuk and V. I. Sugakov. O rdered dissipative structures in exciton
    • systems in semiconductor quantum wells. Phys. Rev. B, 74, 085303 (2006). [121] V. I. Sugakov. Formation of inhomogeneous structures of condensed phases of
    • excitons in quantum wells. Phys. Rev. B, 76, 115303 (2007). [122] M. H. Szymanska and R B. Littlewood. Excitonic binding in coupled quantum
    • wells. Phys. Rev. B, 67, 193305 (2003). [123] D. Snoke, Y. Liu, S. Denev, L. Pfeiffer and K. West. Luminescence rings in
    • quantum well structures. Solid State Commun., 127, 187 (2003). [124] L. V. Butov, L. S. Levitov, A. V. Mintsev, B. D. Simons, A. C. Gossard and
    • rings. Phys. Rev. Lett., 92, 117404 (2004). [125] D. Snoke, S. Denev, Y. Liu, S. Simon, R. R apaport, G. Chen, L. Pfeiffer and
    • structures. J. Phys.: Condens. M atter, 16, S3621 (2004). [155] X. Zhu, P. B. Littlewood, M. S. H ybertsen and T. M. Rice. Exciton condensate
    • in sem iconductor quantum well structures. Phys. Rev. Lett., 74, 1633 (1995). [156] A. Schmeller, W. Hansen, J. P. K otthaus, G. Trankle and G. Weimann. Franz-
    • keldysh effect in a two-dimensional system . Appl. Phys. Lett., 64, 330 (1993). [157] S. Zimmermann, A. O. Govorov, W. Hansen, J. P. K otthaus, M. Bichler and
    • Phys. Rev. B, 56, 13414 (1997). [169 A. V. Gorbunov and V. B. Timofeev. Large-scale coherence of the Bose con­
    • densate of spatially indirect excitons. J E T P Lett., 84, 329 (2006). [170 J. Kasprzak, M. Richard, S. K underm ann, A. Baas, P. Jeam brun, J. M. J.
    • exciton polaritons. Nature, 443, 409 (2006). [171 H. Deng, G. S. Solomon, R. Hey, K. H. Ploog and Y. Yamamoto. Spatial
    • coherence of a polariton condensate. Phys. Rev. Lett., 99, 126403 (2007). [172 E. Hecht. Optics, 4th ed. ((Addison-Wesley, Reading, M assachusetts, 2001).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article