Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yammouni, Robert; Bozzano, Anna; Douglas, Ron H. (2011)
Publisher: Company of Biologists
Languages: English
Types: Article
Subjects: Endogenous, Circadian, Cone contraction, QH301, Retinomotor, Latitude, Equator, Pole

Classified by OpenAIRE into

mesheuropmc: sense organs
Like many physiological systems synchronised to the light:dark cycle, retinomotor movements in 'lower' vertebrates are controlled by both the ambient illumination and input from endogenous circadian oscillators. In the present study, we examine the relative influence of these two signals in various species of teleost fish with different latitudes of origin. We find equatorial species show very strong endogenous control. The cones of the glowlight tetra, for example, continue to go through undiminished cycles of contraction and relaxation that mirror the previous light:dark cycle for at least two weeks in continual darkness. To quantify the relative effectiveness of the ambient light compared with endogenous signals in causing cone contraction, the degree to which seven teleost species responded to light during the dark phase of their light:dark cycle was examined. In this situation the retina receives conflicting instructions; while the light is acting directly to cause light adaptation, any endogenous signal tends to keep the retinal elements dark adapted. The further from the equator a species originated, the more its cones contracted in response to such illumination, suggesting animals from higher latitudes make little use of endogenous oscillators and rely more on ambient illumination to control behaviours. Equatorial species, however, rely on internal pacemakers to a much greater degree and are relatively insensitive to exogenous light signals. Because these data are consistent with published observations in systems as diverse as melatonin synthesis in Arctic reindeer and the behaviour of regional populations of Drosophila, latitudinal clines in the efficacy of circadian oscillators may be a common feature among animals.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allemand, R. and David, J. R. (1976). The circadian rhythm of oviposition in Drosophila melanogaster: a genetic latitudinal cline in wild populations. Experientia 32, 1403-1405.
    • Allemand, R. and David, J. R. (1984). Genetic analysis of the circadian oviposition rhythm in Drosophila melanogaster: effects of drift in laboratory strains. Behav. Genet. 14, 31-43.
    • Arey, L. B. and Mundt, G. H. (1941). A persistent diurnal rhythm in visual cones. Anat. Rec. (suppl) 79, abstract 41.
    • Besharse, J. C. and Iuvone, P. M. (1983). Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature 305, 133-135.
    • Burnside, B. and Ackland, N. (1984). Effects of circadian rhythm and cAMP on retinomotor movements in the Green Sunfish, Lepomis cyanellus. Invest. Ophthalmol. Vis. Sci. 25, 539-545.
    • Burnside, B. and Kingsmith, C. (2010). Fish retinomotor movements. In Encyclopedia of the Eye (eds D. A. Dartt, J. Besharse and R. Danz), pp. 142-150. Oxford: Academic Press.
    • Burnside, B. and Nagle, B. (1983). Retinomotor movements of photoreceptors and retinal pigment epithelium: mechanisms and regulation. Prog. Ret. Res. 2, 67-109.
    • Cahill, G. M. and Besharse, J. C. (1993). Circadian clock functions localized in Xenopus retinal photoreceptors. Neuron 10, 573-577.
    • Cahill, G. M. and Besharse, J. C. (1995). Circadian rhythmicity in vertebrate retinas: regulation by a photoreceptor oscillator. Prog. Ret. Eye Res. 14, 267-291.
    • Costa, R., Peixoto, A. A., Barbujani, G. and Kyriacou, C. P. (1992). A latitudinal cline in a Drosophila clock gene. Proc. R. Soc. Lond. B Bio. 250, 43-49.
    • Dearry, A. and Barlow, R. B. (1987). Circadian rhythms in the Green Sunfish retina. J. Gen. Physiol. 89, 745-770.
    • Douglas, R. H. (1982a). The function of photomechanical movements in the retina of the rainbow trout (Salmo gairdneri). J. Exp. Biol. 96, 389-403.
    • Douglas, R. H. (1982b). An endogenous crepuscular rhythm of rainbow trout (Salmo gairdneri) photomechanical movements. J. Exp. Biol. 96, 377-388.
    • Douglas, R. H. and Wagner, H. J. (1982). Endogenous patterns of photomechanical movements in teleosts and their relation to activity rhythms. Cell Tissue Res. 226, 133-144.
    • Douglas, R. H., Wagner, H. J., Zaunreiter, M., Behrens, U. D. and Djamgoz, M. B. A. (1992). The effect of dopamine depletion on the light-evoked and circadian retinomotor movements of the teleost retina. Visual Neurosci. 9, 335-343.
    • Easter, S. S. and Macy, A. (1978). Local control of retinomotor activity in the fish retina. Vision Res. 18, 937-942.
    • Foster, R. G. and Hankins, M. W. (2002). Non-rod, non-cone photoreception in vertebrates. Prog. Retin. Eye Res. 21, 507-527.
    • Foster, R. G. and Kreitzman, L. (2004). Rhythms of Life. London: Profile Books.
    • Foster, R. G. and Kreitzman, L. (2009). Seasons of Life. London: Profile Books.
    • Goldman, B., Gwinner, E., Karsch, F. J., Saunders, D., Zucker, I. and Ball, G. F. (2004). Circannual rhythms and photoperiodism. In Chronobiology; Biological Timekeeping (eds J. C. Dunlap, J. J. Loros and P. J. DeCoursey), pp. 107-142. Sunderland: Sinauer Associates.
    • Green, C. B. and Besharse, J. C. (2004). Retinal circadian clocks and control of retinal physiology. J. Biol. Rhythms 19, 91-102.
    • Gwinner, E. (1986). Circannual Rhythms. Zoophysiology 18. Heidelberg: SpringerVerlag.
    • Hastings, M. H., Reddy, A. B. and Maywood, E. S. (2003). A clockwork web: circadian timing in brain and periphery, in health and disease. Nature Rev. Neurosci. 4, 649-661.
    • Hau, M., Wikelski, M. and Wingfield, J. C. (1998). A neotropical forest bird can measure the slight changes in tropical photoperiod. Proc. R. Soc. Lond. B. Biol. Sci. 265, 89-95.
    • Iigo, M. I., Ikeda, E., Sato, M., Kawasaki, S., Noguchi, F. and Nishi, G. (2006). Circadian rhythms of ocular melatonin in the wrasse Halichoeres tenuispinnis, a labrid teleost. Gen. Comp. Endocrinol. 145, 32-38.
    • Iuvone, P. M., Tosini, G., Pozdeyeva, N., Haquea, R., Kleind, D. C. and Chaurasiaa, S. S. (2005). Circadian clocks, clock networks, arylalkylamine Nacetyltransferase, and melatonin in the retina. Prog. Retin. Eye Res. 24, 433-456.
    • John, K. R. and Gring, D. M. (1968). Retinomotor rhythms in the bluegill Lepomis macrochirus. J. Fish. Res. Board Can. 25, 373-381.
    • John, K. R. and Haut, M. (1964). Retinomotor cycles and correlated behaviour in the teleost Astyanax mexicanus (Fillipi). J. Fish. Res. Board Can. 21, 591-595.
    • John, K. R. and Kaminester, L. H. (1969). Further studies on retinomotor rhythms in the teleost Astyanax mexicanus. Physiol. Zool. 42, 60-70.
    • John, K. R., Segall, M. and Zawatzky, L. (1967). Retinomotor rhythms in the goldfish, Carassius auratus. Biol. Bull. 132, 200-210.
    • Johnsen, A., Fidler, A. E., Kuhn, S., Carter, K. L., Hoffmann, A., Barr, I. R., Biard, C., Charmantier, A., Eens, M., Korsten, P. et al. (2007). Avian Clock gene polymorphism: evidence for a latitudinal cline in allele frequencies. Mol. Ecol. 16, 4867-4880.
    • Joshi, D. S. (1999). Latitudinal variation in locomotor activity rhythm in adult Drosophiola ananassae. Can. J. Zool. 77, 865-870.
    • Joshi, D. S. and Gore, A. P. (1999). Latitudinal variation in eclosion rhythm among strains of Drosophila ananassae. Indian J. Exp. Biol. 37, 718-724.
    • Keny, V. L., Vanlalnghaka, C., Hakim, S. S., Khare, P. V., Barnabas, R. J. and Joshi, D. S. (2008). Latitude dependent arrhythmicity in the circadian oviosition rhythm of Drosophila ananassae. Biol. Rhythm Res. 39, 143-150.
    • Kirsch, M., Wagner, H. J. and Douglas, R. H. (1989). Rods trigger light adaptive retinomotor movements in all spectral cone types in a teleost fish. Vision Res. 29, 389-396.
    • Konings, A. (1988). Tanganyika Cichlids. Verduijn cichlids: Zevenhuizen.
    • Kullander, S. O. (1986). Cichlid Fishes of the Amazon River Drainage of Peru. Stockholm: Swedish Museum of Natural History.
    • Kyriacou, C. P., Peixoto, A. A., Sandrelli, F., Costa, R. and Tauber, E. (2007). Clines in clock genes: fine-tuning circadian rhythms to the environment. Trends Genet. 24, 124-132.
    • Lamb, T. D. and Pugh, E. N. (2004). Dark adaptation and the retinoid cycle of vision. Prog. Ret. Eye Res. 23, 307-380.
    • Lankinen, P. (1986). Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila littoralis. J. Comp. Physiol. A 159, 123- 142.
    • Lankinen, P. (1993). North-south differences in circadian eclosion rhythm in European populations of Drosophila subobscura. Heredity 71, 210-218.
    • Levinson, G. and Burnside, B. (1981). Circadian rhythms in teleost retinomotor movements; a comparison of the effects of circadian rhythm and light condition on cone length. Invest. Ophth. Vis. Sci. 20, 294-303.
    • Lofts, B. (1962). Photoperiod and the refractory period of reproduction in an equatorial bird, Quelea quelea. IBIS 104, 407-414.
    • Lu, W., Meng, Q. J., Tyler, N. J. C., Stokkan, K. A. and Loudon, A. S. I. (2010). A circadian clock is not required in an arctic mammal. Curr. Biol. 20, 1-5.
    • Lythgoe, J. N. and Shand, J. (1983). Endogenous circadian retinomotor movements in the neon tetra (Paracheirodon innesi). Invest. Ophth. Vis. Sci. 2, 1203-1210.
    • Mayer, W. (1966). Besonderheiten der circadianen Rhythmik bei Pflanzen verschiedener geographischer Breiten. Planta 70, 237-256.
    • McCormack, C. A. and Burnside, B. (1991). Effects of circadian phase on cone retinomotor movements in the Midas cichlid. Exp. Eye Res. 52, 431-438.
    • McCormack, C. A. and Burnside, B. (1992). A role for endogenous dopamine in circadian regulation of retinal cone movement. Exp. Eye Res. 55, 511-520.
    • McCormack, C. A. and McDonnell, M. T. (1994). Circadian regulation of teleost retinal cone movements in vitro. J. Gen. Physiol. 103, 487-499.
    • McFarland, W. N., Ogden, J. C. and Lythgoe, J. N. (1979). The influence of light on the twilight migrations of grunts. Environ. Biol. Fishes 4, 9-22.
    • Menger, G. J., Koke, J. R. and Cahill, G. M. (2005). Diurnal and circadian retinomotor movements in zebrafish. Vis. Neurosci. 22, 203-209.
    • Michael, T. P., Salomé, P. A., Yu, H. J., Spencer, T. R., Sharp, E. L., McPeek, M. A., Alonso, J. M., Ecker, J. R. and McClung, C. R. (2003). Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302, 1049- 1053.
    • Olla, B. L. and Marchioni, W. N. (1968). Rhythmic movements of cones in the retina of Bluefish, Pomatomus saltatrix, held in constant darkness. Biol. Bull. 135, 530-536.
    • Perlman, I. and Normann, A. (1998). Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors. Prog. Retin. Eye Res. 17, 523-563.
    • Pflüger, W. and Neumann, D. (1971). Die Steuerung einer gezeitenparallelen Schlüpfrhythmik nach dem Sanduhr-Prinzip. Oecologia 7, 262-266.
    • Pittendrigh, C. S. and Takamura, T. (1989). Latitudinal clines in the properties of a circadian pacemaker. J. Biol. Rhythms 4, 217-235.
    • Pittendirgh, C. S., Kyner, W. T. and Takamura, T. (1991). The amplitude of circadian oscillations: temperature dependence, latitudinal clines, and the photoperiodic time measurement. J. Biol. Rhythms 6, 299-313.
    • Ribelayga, C., Wang, Y. and Mangel, S. C. (2003). A circadian clock in the fish retina regulates dopamine release via activation of melatonin receptors. J. Physiol. (Lond.) 554, 467-482.
    • Satralkar, M. K., Keny, V. L., Khare, P. V., Vanlalnghaka, C., Kasture, M. S., Shivagaje, A. J., Barnabas, R. J., Iyyer, S. B. and Joshi, D. S. (2007a). Latitudinal variation in oviposition rhythm of Drosophila ananassae strains originating from the equator to subtropics. Biol. Rhythm Res. 38, 391-398.
    • Satralkar, M. K., Keny, V. L., Khare, P. V., Vanlalnghaka, C., Kasture, M. S., Shivagaje, A. J., Barnabas, R. J., Iyyer, S. B. and Joshi, D. S. (2007b). Latitude dependent lability of phase response curve for oviposition rhythm of Drosophila ananassae. Biol. Rhythm Res. 38, 421-426.
    • Sawyer, L. A., Hennessy, J. M., Peixoto, A. A., Rosato, E., Parkinson, H., Costa, R. and Kyriacou, C. P. (1997). Natural variation in a Drosophila clock gene and temperature compensation. Science 278, 2117-2120.
    • Shand, J. and Foster, R. G. (1999). The extraretinal photoreceptors of nonmammalian vertebrates. In Adaptive Mechanisms in the Ecology of Vision (eds S. N. Archer, M. B. A. Djamgoz, E. R. Loew, J. C. Partridge and S. Vallerga), pp. 197-222. Dordrecht: Kluwer Academic Publishers.
    • Simunovic, A. and Jaenike, J. (2006). Adaptive variation among Drosophila species in their circadian rhythms. Evol. Ecol. Res. 8, 803-811.
    • Tosini, G. and Fukuhara, C. (2002). The mammalian retina as a clock. Cell Tissue Res. 309, 119-126.
    • Tosini, G., Pozdeyev, N., Sakamoto, K. and Iuvone, P. M. (2008). The circadian clock system in the mammalian retina. BioEssays 30, 624-633.
    • Wagner, H. J., Kirsch, M. and Douglas, R. H. (1992). Light dependent and endogenous circadian control of adaptation in teleost retinae. In Rhythms in Fishes (ed. M. A. Ali), pp. 255-291. New York: Plenum Press.
    • Weeks, A. R., McKechnie, S. W. and Hoffmann, A. A. (2006). In search of clinal variation in the period and clock timing genes in Australian Drosophila melanogaster populations. J. Evol. Biol. 19, 551-557.
    • Weitzman, S. H. and Fink, W. L. (1983). Relationships of the neon tetras, a group of South American fishes (Teleostei, Characidae), with comments on the phylogeny of New World characiforms. Bull. Mus. Comp. Zool. 150, 339-395.
    • Welsh, J. H. and Osborn, C. M. (1937). Diurnal changes in the retina of the catfish, Ameiurus nebulosus. J. Comp. Neurol. 66, 349-359.
    • Whitmore, D., Foulkes, N. S., Strahle, U. and Sassone-Corsi, P. (1998). Zebrafish clock rhythmic expression reveals independent peripheral circadian oscillators. Nat. Neurosci. 8, 701-707.
    • Wigger, H. (1941). Diskontinuität und Tagesrhythmik in der Dunkelwanderung retinaler Elemente. Z. Vgl. Physiol. 28, 421-427.
    • Yeates-Burghart, Q. S., O'Brien, C., Cresko, W. A., Holzapfel, C. M. and Bradshaw, W. E. (2009). Latitudinal variation in photoperiodic response of the therespined stickleback Gasterosteus aculeatus in western North America. J. Fish Biol. 75, 2075-2081.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article