LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Singh, Manjesh K.; Ilg, Patrick; Espinosa-Marzal, Rosa M.; Kroger, Martin; Spencer, Nicholas D. (2016)
Publisher: Springer
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: technology, industry, and agriculture, macromolecular substances
Polymer brushes in good solvents are known to exhibit excellent tribological properties. We have modeled polymer brushes and their gels using a multibead-spring model and studied their tribological behavior via nonequilibrium molecular-dynamics (MD) simulations. Simulations of brush- against-wall systems were performed using an implicit solvent-based approach. Polymer chains were modeled as linear chains, randomly grafted on a planar surface. Quantities extracted from the simulations are the normal stress, shear stress and concentration profiles. We find that while an increase in the degree of crosslinking leads to an increase in the coefficient of friction, an increase of the length of crosslinker chains does the opposite. Effect of crosslinking can be understood in two ways: (i) there are fewer polymer chains in the outer layer as the degree of crosslinking increases to take part in brush-assisted lubrication, and (ii) crosslinked polymer chains are more resistant to shear than non-crosslinked ones.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Napper, D.H.: Polymeric stabilization of colloidal dispersions. London ; New York : Academic Press (1983).
    • Hucknall, A., Simnick, A.J., Hill, R.T., Chilkoti, A., Garcia, A., Johannes, M.S., Clark, R.L., Zauscher, S., Ratner, B.D.: Versatile synthesis and micropatterning of nonfouling polymer brushes on the wafer scale. Biointerphases. 4, FA50-7 (2009).
    • Auroy, P., Auvray, L., Leger, L.: Characterization of the Brush Regime for Grafted Polymer Layers at the Solid-Liquid Interface. Phys. Rev. Lett. 66, 719-722 (1991).
    • Lee, S., Spencer, N.D., Erdemir, A., Martin, J.M.: Achieving ultralow friction by aqueous, brush-assisted lubrication. Superlubricity. 365-396 (2007).
    • Li, A.: Structure-property Relationships of Surface-grafted Polymeric Architectures: From Ultra-Thin Films To Quasi-3D Polymer Assemblies. PhD Thesis. ETH Zurich (2013).
    • Dunn, A.C., Sawyer, W.G., Angelini, T.E.: Gemini Interfaces in Aqueous Lubrication with Hydrogels. Tribol. Lett. 54, 59-66 (2014).
    • Freeman, M.E., Furey, M.J., Love, B.J., Hampton, J.M.: Friction, wear, and lubrication of hydrogels as synthetic articular cartilage. Wear. 241, 129-135 (2000).
    • Irfachsyad, D., Tildesley, D., Malfreyt, P.: Dissipative particle dynamics simulation of grafted polymer brushes under shear. Phys. Chem. Chem. Phys. 4, 3008-3015 (2002).
    • Chen, M., Briscoe, W.H., Armes, S.P., Klein, J.: Lubrication at Physiological Pressures by Polyzwitterionic Brushes. Science. 323, 1698-1701 (2009).
    • Klein, J., Perahia, D., Warburg, S.: Forces between polymer-bearing surfaces undergoing shear. Nature. 352, (1991).
    • Li, A., Benetti, E.M., Tranchida, D., Clasohm, J.N., Schönherr, H., Spencer, N.D.: SurfaceGrafted, Covalently Cross-Linked Hydrogel Brushes with Tunable Interfacial and Bulk Properties. Macromolecules. 44, 5344-5351 (2011).
    • Gong, J.P.: Friction and lubrication of hydrogels?its richness and complexity. Soft Matter. 2, 544 (2006).
    • New York. Tokyo (1993).
    • In: Polymer Science: A Comprehensive Reference. pp. 607-628. Elsevier (2012).
    • Klein, J., Kumacheva, E., Perahia, D., Mahalu, D., Warburg, S.: Interfacial sliding of polymerbearing surfaces. Faraday Discuss. 98, 173 (1994).
    • Klein, J., Kumacheva, E., Mahaiu, D., Perahia, D., Fetters, L.J.: Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature. 370, 634-636 (1994).
    • Nalam, P.C., Ramakrishna, S.N., Espinosa-Marzal, R.M., Spencer, N.D.: Exploring Lubrication Regimes at the Nanoscale: Nanotribological Characterization of Silica and Polymer Brushes in Viscous Solvents. Langmuir. 29, 10149-10158 (2013).
    • Lee, S., Spencer, N.D.: Sweet, Hairy, Soft, and Slippery. Science. 319, 575-576 (2008).
    • Colloid Interface Sci. 2, 271-277 (1997).
    • Hoy, R.S., Grest, G.S.: Entanglements of an End-Grafted Polymer Brush in a Polymeric Matrix. Macromolecules. 40, 8389-8395 (2007).
    • Grest, G.S.: Grafted polymer brushes: a constant surface pressure molecular dynamics simulation. Macromolecules. 27, 418-426 (1994).
    • Kremer, K., Grest, G.S.: Dynamics of entangled linear polymer melts:   A molecular‐dynamics simulation. J. Chem. Phys. 92, 5057-5086 (1990).
    • Rev. Lett. 76, 4979-4982 (1996).
    • Murat, M., Grest, G.S.: Molecular dynamics simulations of the force between a polymer brush and an AFM tip. Macromolecules. 29, 8282-8284 (1996).
    • Grest, G.S.: Normal and shear forces between polymer brushes. Adv. Polym. Sci. 138, 149- 183 (1999).
    • Singh, M.K., Ilg, P., Espinosa-Marzal, R.M., Kröger, M., Spencer, N.D.: Polymer Brushes under Shear: Molecular Dynamics Simulations Compared to Experiments. Langmuir. 31, 4798-4805 (2015).
    • Galuschko, A., Spirin, L., Kreer, T., Johner, A., Pastorino, C., Wittmer, J., Baschnagel, J.: Frictional Forces between Strongly Compressed, Nonentangled Polymer Brushes: Molecular Dynamics Simulations and Scaling Theory. Langmuir. 26, 6418-6429 (2010).
    • Nalam, P.C.: Polymer Brushes in Aqueous Solvent Mixtures: Impact of Polymer Conformation on Tribological Properties. PhD Thesis. ETH Zurich. (2012).
    • Kim, S.H., Opdahl, A., Marmo, C., Somorjai, G.A.: AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of noncrosslinked polymer chains at the surface. Biomaterials. 23, 1657-1666 (2002).
    • Pan, Y.-S., Xiong, D.-S., Ma, R.-Y.: A study on the friction properties of poly(vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear. 262, 1021-1025 (2006).
    • Gong, J.P., Higa, M., Iwasaki, Y., Katsuyama, Y., Osada, Y.: Friction of gels. Journal of Physical Chemistry B. 101, 5487-5489 (1997).
    • Caravia, L., Dowson, D., Fisher, J., Corkhill, P.H., Tighe, B.J.: Friction of Hydrogel and Polyurethane Elastic Layers When Sliding Against Each Other Under a Mixed Lubrication Regime. Wear. 181, 236-240 (1995).
    • Gong, J.P., Kurokawa, T., Narita, T., Kagata, G., Osada, Y., Nishimura, G., Kinjo, M.: Synthesis of Hydrogels with Extremely Low Surface Friction. J. Am. Chem. Soc. 123, 5582- 5583 (2001).
    • Tribol. Lett. 42, 241-251 (2011).
    • Bavaresco, V.P., Zavaglia, C.A.C., Reis, M.C., Gomes, J.R.: Study on the tribological properties of pHEMA hydrogels for use in artificial articular cartilage. Wear. 265, 269-277 (2008).
    • Ohsedo, Y., Takashina, R., Gong, J.P., Osada, Y.: Surface friction of hydrogels with welldefined polyelectrolyte brushes. Langmuir. 20, 6549-6555 (2004).
    • Alexander, S.: Adsorption of chain molecules with a polar head a scaling description. J. Phys59.
    • Paris. 38, 983-987 (1977).
    • De Gennes, P.G.: Conformations of Polymers Attached to an Interface. Macromolecules. 13, 1069-1075 (1980).
    • Phys. Rev. E. 48, 2739-2743 (1993).
    • Zhulina, Y.B., Pryamitsyn, V.A., Borisov, O.V.: Structure and conformational transitions in grafted polymer chain layers. A new theory. Polymer Science U.S.S.R. 31, 205-216 (1989).
    • Binder, K., Müller, M.: Monte Carlo simulation of block copolymers. Curr. Opin. Colloid Interface Sci. 5, 315-323 (2000).
    • Comput. Phys. Commun. 182, 2115-2121 (2011).
    • Binder, K., Müller, M., Schmid, F., Werner, A.: Interfaces in partly compatible polymer mixtures: a Monte-Carlo simulation approach. Physica A. 249, 293-300 (1998).
    • Doyle, P.S., Shaqfeh, E., Gast, A.P.: Rheology of polymer brushes: A Brownian dynamics study. Macromolecules. 31, 5474-5486 (1998).
    • Goujon, F., Ghoufi, A., Malfreyt, P., Tildesley, D.J.: The kinetic friction coefficient of neutral and charged polymer brushes. Soft Matter. 9, 2966 (2013).
    • Macromolecules. 45, 8880-8891 (2012).
    • Elliott, I.G., Kuhl, T.L., Faller, R.: Compression of High Grafting Density Opposing Polymer Brushes Using Molecular Dynamics Simulations in Explicit Solvent. J. Phys. Chem. B. 117, 4134-4141 (2013).
    • Jentzsch, C., Sommer, J.-U.: Polymer brushes in explicit poor solvents studied using a new variant of the bond fluctuation model. J. Chem. Phys. 141, 104908 (2014).
    • Kreer, T., Binder, K., Müser, M.H.: Friction between Polymer Brushes in Good Solvent Conditions: Steady-State Sliding versus Transient Behavior. Langmuir. 19, 7551-7559 (2003).
    • Kreer, T., Müser, M.H., Binder, K., Klein, J.: Frictional Drag Mechanisms between PolymerBearing Surfaces. Langmuir. 17, 7804-7813 (2001).
    • Kreer, T., Müser, M.H.: On the tribology and rheology of polymer brushes in good solvent conditions: a molecular dynamics study. Wear. 254, 827-831 (2003).
    • de Beer, S., Müser, M.H.: Alternative dissipation mechanisms and the effect of the solvent in friction between polymer brushes on rough surfaces. Soft Matter. 9, 7234 (2013).
    • Dimitrov, D.I., Milchev, A., Binder, K.: Polymer brushes in solvents of variable quality: Molecular dynamics simulations using explicit solvent. J. Chem. Phys. 127, 084905 (2007).
    • Strasbourg University. (2010).
    • E. 76, 026706 (2007).
    • Chen, J., Zhou, S.-M., Ma, B.-G., Zhang, L.-M., Yi, J.-Z.: Molecular dynamics simulations on dextran hydrogels. E-Polymers. 13, 1-8 (2013).
    • Walter, J., Sehrt, J., Vrabec, J., Hasse, H.: Molecular Dynamics and Experimental Study of Conformation Change of Poly( N-isopropylacrylamide) Hydrogels in Mixtures of Water and Methanol. J. Phys. Chem. B. 116, 5251-5259 (2012).
    • Tönsing, T., Oldiges, C.: Molecular dynamic simulation study on structure of water in crosslinked poly(N-isopropylacrylamide) hydrogels. Phys. Chem. Chem. Phys. 3, 5542-5549 (2001).
    • Phys. Rev. E. 83, 021803 (2011).
    • Ou, X., Han, Q., Dai, H.-H., Wang, J.: Molecular dynamic simulations of the water absorbency of hydrogels. J Mol Model. 21, 231-10 (2015).
    • Kröger, M.: Efficient hybrid algorithm for the dynamic creation of wormlike chains in solutions, brushes, melts and glasses. Comput. Phys. Commun. 118, 278-298 (1999).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article