Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Plenderleith, R.A.; Pateman, C.J.; Rodenburg, C.; Haycock, J.W.; Claeyssens, F.; Sammon, C.; Rimmer, S. (2015)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article

Classified by OpenAIRE into

mesheuropmc: technology, industry, and agriculture, macromolecular substances
For the first time a series of functional hydrogels based on semi-interpenetrating networks with both\ud branched and crosslinked polymer components have been prepared and we show the successful use of\ud these materials as substrates for cell culture. The materials consist of highly branched poly(N-isopropyl\ud acrylamide)s with peptide functionalised end groups in a continuous phase of crosslinked poly(vinyl\ud pyrrolidone). Functionalisation of the end groups of the branched polymer component with the GRGDS\ud peptide produces a hydrogel that supports cell adhesion and proliferation. The materials provide a new\ud synthetic functional biomaterial that has many of the features of extracellular matrix, and as such can be\ud used to support tissue regeneration and cell culture. This class of high water content hydrogel material\ud has important advantages over other functional hydrogels in its synthesis and does not require postprocessing\ud modifications nor are functional-monomers, which change the polymerisation process,\ud required. Thus, the systems are amenable to large scale and bespoke manufacturing using conventional\ud moulding or additive manufacturing techniques. Processing using additive manufacturing is exemplified\ud by producing tubes using microstereolithography.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • and (iii) a computer controlled z-axis translation stage (Thorlabs 19 S. Rimmer, S. Carter, R. Rutkaite, J. W. Haycock and
    • Ltd, Cambridgeshire, UK). A color inverted image was created L. Swanson, Soft Matter, 2007, 3, 971-973.
    • in MS paint and uploaded to the DMD by control software 20 Y. Guan and Y. Zhang, Soft Matter, 2011, 7, 6375-6384.
    • (ALP basic). The laser power was set to 10 mV and projected via 21 Z. M. O. Rzaev, S. Dinçer and E. Pis-kin, Prog. Polym. Sci.,
    • a beam expander onto the DMD. The image from the DMD 2007, 32, 534-595.
    • was focused via several lenses onto the surface of the monomer. 22 B. R. Saunders, N. Laajam, E. Daly, S. Teow, X. Hu and
    • The z-stage was moved in a downwards direction at a speed of R. Stepto, Adv. Colloid Interface Sci., 2009, 147-148, 251-262.
    • 0.03 mm s 1 allowing the polymerisation to occur at the surface 23 Q. Yu, L. M. Johnson and G. P. Lo´pez, Adv. Funct. Mater.,
    • of the monomer. 2014, 24, 3751-3759. 24 Y. Morita and I. Kaetsu, Radiat. Phys. Chem., 1992, 39, 473-476. 25 D. Schmaljohann, Adv. Drug Delivery Rev., 2006, 58, 1655-1670.
    • Acknowledgements 26 T. Owaki, T. Shimizu, M. Yamato and T. Okano, Biotechnol. J., 2014, 9, 904-914.
    • The authors acknowledge funding from EPSRC for a student- 27 L. S. Wang, P. Y. Chow, T. T. Phan, I. J. Lim and Y. Y. Yang,
    • ship for Richard Penderleith. Adv. Funct. Mater., 2006, 16, 1171-1178. 28 J. Collett, A. Crawford, P. V. Hatton, M. Geoghegan and
    • Notes and references S. Rimmer, J. R. Soc., Interface, 2007, 4, 117-126. 29 C. Sammon, C. Li, S. P. Armes and A. L. Lewis, Polymer,
    • 1 E. S. Dragan, Chem. Eng. J., 2014, 243, 572-590. 2006, 47, 6123-6130.
    • 2 M. Shivashankar and B. K. Mandal, Int. J. Pharm. Pharm. 30 S. Malik and A. K. Nandi, J. Phys. Chem. B, 2003, 108, 597-604. Sci., 2012, 4, 1-7. 31 Y.-l. Su, J. Wang and H.-z. Liu, Macromolecules, 2002, 35,
    • 3 G. C. Ingavle, S. H. Gehrke and M. S. Detamore, Biomaterials, 6426-6431. 2014, 35, 3558-3570. 32 Y.-L. Su, H.-Z. Liu, C. Guo and J. Wang, Mol. Simul., 2003,
    • 4 Y. Jiang, J. Chen, C. Deng, E. J. Suuronen and Z. Zhong, 29, 803-808. Biomaterials, 2014, 35, 4969-4985. 33 Y. Maeda, T. Nakamura and I. Ikeda, Macromolecules, 2001,
    • 5 M. Guvendiren and J. A. Burdick, Nat. Commun., 2012, 34, 1391-1399. 3, 1792. 34 E. Mart´ınez, A. Lagunas, C. A. Mills, S. Rodr´ıguez-Segu´ı,
    • 6 J. Zhu, Biomaterials, 2010, 31, 4639-4656. M. Est´evez, S. Oberhansl, J. Comelles and J. Samitier, Nano-
    • 7 J. L. Drury and D. J. Mooney, Biomaterials, 2003, 24, medicine, 2009, 4, 65-82. 4337-4351. 35 A. M. Ross, Z. Jiang, M. Bastmeyer and J. Lahann, Small,
    • 8 R. Zhang, H. K. Mjoseng, M. A. Hoeve, N. G. Bauer, S. Pells, 2012, 8, 336-355. R. Besseling, S. Velugotla, G. Tourniaire, R. E. B. Kishen, 36 K. J. McHugh, M. Saint-Geniez and S. L. Tao, J. Biomed. Y. Tsenkina, C. Armit, C. R. E. Duffy, M. Helfen, F. Edenhofer, Mater. Res., Part B, 2013, 101, 1571-1576. P. A. de Sousa and M. Bradley, Nat. Commun., 2013, 4, 1335. 37 S. Rimmer, M. J. German, J. Maughan, Y. Sun, N. Fullwood,
    • 9 I. T. Ozbolat and Y. Yin, IEEE Trans. Biomed. Eng., 2013, 60, J. Ebdon and S. MacNeil, Biomaterials, 2005, 26, 2219-2230. 691-699. 38 M. T. Postek and A. E. Vladar, Scanning, 2008, 30, 457.
    • 10 T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe 39 V. Kumar, H. Wang and C. Rodenburg, Org. Electron., 2014, and P. Dubruel, Biomaterials, 2012, 33, 6020-6041. 15, 2059-2067.
    • 11 A. Khademhosseini and R. Langer, Biomaterials, 2007, 28, 40 L. Perlin, S. MacNeil and S. Rimmer, Soft Matter, 2008, 4, 5087-5092. 2331-2349.
    • 12 X. Tong and F. Yang, Biomaterials, 2014, 35, 1807-1815. 41 L. E. Smith, S. Rimmer and S. MacNeil, Biomaterials, 2006,
    • 13 O. Chaudhuri, S. T. Koshy, C. Branco da Cunha, J.-W. Shin, 27, 2806-2812. C. S. Verbeke, K. H. Allison and D. J. Mooney, Nat. Mater., 42 K. A. Kilian and M. Mrksich, Angew. Chem., Int. Ed., 2012, 2014, 13, 970-980. 51, 4891-4895.
    • 14 S. F. Grundfest-Broniatowski, G. Tellioglu, K. S. Rosenthal, 43 D. E. Discher, P. Janmey and Y.-l. Wang, Science, 2005, 310, J. Kang, G. Erdodi, B. Yalcin, M. Cakmak, J. Drazba, 1139-1143. A. Bennett, L. Lu and J. P. Kennedy, ASAIO J., 2009, 55, 400-405. 44 K. Ye, X. Wang, L. Cao, S. Li, Z. Li, L. Yu and J. Ding, Nano
    • 15 Y. Sun, J. Collett, N. J. Fullwood, S. Mac Neil and S. Rimmer, Lett., 2015, 15, 4720-4729. Biomaterials, 2007, 28, 661-670. 45 T. D. Hansen, J. T. Koepsel, N. N. Le, E. H. Nguyen, S. Zorn,
    • 16 X. Li, J. Zhou, Z. Liu, J. Chen, S. Lu¨, H. Sun, J. Li, Q. Lin, M. Parlato, S. G. Loveland, M. P. Schwartz and B. Yang, C. Duan, M. Xing and C. Wang, Biomaterials, 2014, W. L. Murphy, Biomater. Sci., 2014, 2, 745-756. 35, 5679. 46 I. Hopp, A. Michelmore, L. E. Smith, D. E. Robinson,
    • 17 L. K. Kostanski, R. Huang, C. D. M. Filipe and R. Ghosh, A. Bachhuka, A. Mierczynska and K. Vasilev, Biomaterials, J. Biomater. Sci., Polym. Ed., 2009, 20, 271-297. 2013, 34, 5070-5077.
    • 18 S. Hopkins, S. R. Carter, J. W. Haycock, N. J. Fullwood, 47 F. R. Maia, A. H. Lourenço, P. L. Granja, R. M. Gonçalves S. MacNeil and S. Rimmer, Soft Matter, 2009, 5, 4928-4937. and C. C. Barrias, Macromol. Biosci., 2014, 14, 759-771.
    • 48 H. W. Chien, S. W. Fu, A. Y. Shih and W. B. Tsai, Biotechnol. J., 2014, 9, 1613-1623.
    • 49 L. Y. Koo, D. J. Irvine, A. M. Mayes, D. A. Lauffenburger and L. G. Griffith, J. Cell Sci., 2002, 115, 1423-1433.
    • 50 D. J. Irvine, A. M. Mayes and L. G. Griffith, Biomacromolecules, 2001, 2, 85-94.
    • 51 S. P. Massia and J. A. Hubbell, J. Cell Biol., 1991, 114, 1089-1100.
    • 52 S. H. Lee, J. J. Moon and J. L. West, Biomaterials, 2008, 29, 2962-2968.
    • 53 C. H. Yu, N. Rafiq, A. Krishnasamy, K. Hartman, G. Jones, A. Bershadsky and M. Sheetz, Cell Rep., 2013, 5, 1456-1468.
    • 54 R. J. Seelbach, P. Fransen, M. Peroglio, D. Pulido, P. Lopez-Chicon, F. Duttenhoefer, S. Sauerbier, T. Freiman, P. Niemeyer, C. Semino, F. Albericio, M. Alini, M. Royo, A. Mata and D. Eglin, Acta Biomater., 2014, 10, 4340-4350.
    • 55 M. Yamato, Y. Akiyama, J. Kobayashi, J. Yang, A. Kikuchi and T. Okano, Prog. Polym. Sci., 2007, 32, 1123-1133.
    • 56 S. P. Massia and J. A. Hubbell, J. Cell Biol., 1991, 114, 1089-1100.
    • 57 D. R. Ralston, C. Layton, A. J. Dalley, S. G. Boyce, E. Freedlander and S. Macneil, Br. J. Dermatol., 1999, 140, 605-615.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article