Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Weaver, RE; Mobarec, JC; Wigglesworth, MJ; Reynolds, CA; Donnelly, D (2017)
Publisher: Elsevier
Languages: English
Types: Article
TIP39 (“tuberoinfundibular peptide of 39 residues”) acts via the parathyroid hormone 2 receptor, PTH₂, a Family B G protein-coupled receptor (GPCR). Despite the importance of GPCRs in human physiology and pharmacotherapy, little is known about the molecular details of the TIP39-PTH₂ interaction. To address this, we utilised the different pharmacological profiles of TIP39 and PTH(1-34) at PTH₂ and its related receptor PTH₁: TIP39 being an agonist at the former but an antagonist at the latter, while PTH(1-34) activates both. A total of 23 site-directed mutations of PTH₂, in which residues were substituted to the equivalent in PTH₁, were made and pharmacologically screened for agonist activity. Follow-up mutations were analysed by radioligand binding and cAMP assays. A model of the TIP39-PTH₂ complex was built and analysed using molecular dynamics. Only Tyr318-Ile displayed reduced TIP39 potency, despite having increased PTH(1-34) potency, and further mutagenesis and analysis at this site demonstrated that this was due to reduced TIP39 affinity at Tyr318-Ile (pIC50 = 6.01±0.03) compared with wild type (pIC₅₀ = 7.81±0.03). The hydroxyl group of the Tyr-318’s side chain was shown to be important for TIP39 binding, with the Tyr318-Phe mutant displaying 13-fold lower affinity and 35-fold lower potency compared with wild type. TIP39 truncated by up to 5 residues at the N-terminus was still sensitive to the mutations at Tyr-318, suggesting that it interacts with a region within TIP39(6-39). Molecular modelling and molecular dynamics simulations suggest that the selectivity is based on an interaction between the Tyr-318 hydroxyl group with the carboxylate side chain of Asp-7 of the peptide.

Share - Bookmark

Cite this article