LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Simpson, Russell Michael
Languages: English
Types: Doctoral thesis
Subjects: R1
Collectively, the data demonstrated that HA can serve as a signal integrator by facilitating TGF-beta11-mediated CD44-EGF-R-ERK interactions and ultimately regulate fibroblast phenotype. I propose a model to explain this novel mechanism and the functional consequence of age-dependent dysregulation. This mechanism may have direct implications for modifying the wound healing response, particularly for developing therapeutic strategies to improve healing in the elderly
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 96. Megan, E.S., et al., Site-specific production o f TGF-P; in oral mucosal and cutaneous wounds. Wound Repair and Regeneration, 2008.16(1): p. 80-86.
    • 97. Rolfe, K.J., et al., Differential gene expression in response to transforming growth factor-pl by fe ta l and postnatal dermal fibroblasts. Wound Repair and Regeneration, 2007.15(6): p. 897-906.
    • 98. Lorenz, H.P., et al., The feta l fibroblast: the effector cell o f scarless fetal skin repair. Plast Reconstr Surg, 1995. 96(6): p. 1251-9; discussion 1260-1.
    • 99. Rolfe, K.J., et al., A role fo r TGF-betal-induced cellular responses during wound healing o f the non-scarring early human fetus? J Invest Dermatol, 2007. 127(11): p. 2656-67.
    • 100. Mogford, J.E., et al., Effect o f age and hypoxia on TGFbetal receptor expression and signal transduction in human dermal fibroblasts: impact on cell migration. Journal o f Cell Physiology, 2002.190(2): p. 259-65.
    • 101. Chin, D., et al., What is transforming growth factor-beta (TGF-[beta])? British Journal o f Plastic Surgery, 2004. 57(3): p. 215-221.
    • 102. Schrementi, M.E., et al., Site-specific production ofTGF- betal; in oral mucosal and cutaneous wounds. Wound Repair and Regeneration, 2008.16(1): p. 80-86.
    • 103. Jakowlew, S.B., et al., Differential regulation o f the expression o f transforming growth factor-beta mRNAs by growth factors and retinoic acid in chicken embryo chondrocytes, myocytes, andfibroblasts. J Cell Physiol, 1992.150(2): p. 377-85.
    • 104. Villiger, P.M. and M. Lotz, Differential expression o f TGF beta isoforms by human articular chondrocytes in response to growth factors. J Cell Physiol, 1992.151(2): p. 318-25.
    • 105. Piek, E., C.H. Heldin, and P. Ten Dijke, Specificity, diversity, and regulation in TGF-beta superfamily signaling. Faseb J, 1999.13(15): p. 2105-24.
    • 106. Leask, A. and D.J. Abraham, TGF-{beta} signaling and the fibrotic response. FASEB J, 2004.18(7): p. 816-827.
    • 107. Roberts, A.B., Molecular and cell biology o f TGF-beta. Miner Electrolyte Metab, 1998. 24(2-3): p. 111-9.
    • 108. Roberts, A.B., et al., Transforming growth factor type beta: rapid induction o f fibrosis and angiogenesis in vivo and stimulation o f collagen formation in vitro. Proc Natl Acad Sci U S A , 1986. 83(12): p. 4167-71.
    • 109. Kagami, S., et al., Coordinated expression o f beta 1 integrins and transforming growth factor-beta-induced matrix proteins in glomerulonephritis. Lab Invest, 1993. 69(1): p. 68-76.
    • 110. Desmouliere, A., Factors influencing myofibroblast differentiation during wound healing andfibrosis. Cell Biology International, 1995.19(5): p. 471-471.
    • 111. Desmouliere, A., et al., Transforming growth factor-beta 1 induces alphasmooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol., 1993. 122(1): p. 103- 111.
    • 112. Evans, R.A., et al., TGF-[beta]1-mediated fibroblast-myofibroblast terminal differentiation-the role o f smad proteins. Experimental Cell Research, 2003. 282(2): p. 90-100.
    • 113. Massague, J., TGF-beta signal transduction. Annu Rev Biochem, 1998. 67: p. 753-91.
    • 114. Shull, M.M., et al., Targeted disruption o f the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature, 1992. 359(6397): p. 693-9.
    • 115. Hogan, B.L., Bone morphogenetic proteins: multifunctional regulators o f vertebrate development. Genes Dev, 1996.10(13): p. 1580-94.
    • 116. Kingsley, D.M., The TGF-beta superfamily: new members, new receptors, and new genetic tests o ffunction in different organisms. Genes Dev, 1994. 8(2): p. 133-46.
    • 117. Pannu, J., et al., An increased transforming growth factor beta receptor type T.type II ratio contributes to elevated collagen protein synthesis that is resistant to inhibition via a kinase-deficient transforming growth factor beta receptor type II in scleroderma. Arthritis Rheum, 2004. 50(5): p. 1566-77.
    • 118. Evans, R.A., et al., TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role o f Smad proteins. Exp Cell Res, 2003. 282(2): p. 90-100.
    • 119. Desmouliere, A., et al., Transforming growth factor-beta 1 induces alphasmooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing culturedfibroblasts. J Cell Biol, 1993.122(1): p. 103-11.
    • 120. Vaughan, M.B., E.W. Howard, and J.J. Tomasek, Transforming growth factorbetal promotes the morphological and functional differentiation o f the myofibroblast. Exp Cell Res, 2000. 257(1): p. 180-9.
    • 121. Border, W.A. and E. Ruoslahti, Transforming growth factor-beta in disease: the dark side o f tissue repair. J Clin Invest, 1992. 90(1): p. 1-7.
    • 122. Leask, A., TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res, 2007. 74(2): p. 207-12.
    • 123. Okuda, S., et al., Elevated expression o f transforming growth factor-beta and proteoglycan production in experimental glomerulonephritis. Possible role in expansion o f the mesangial extracellular matrix. J Clin Invest, 1990. 86(2): p. 453-62.
    • 124. Fraser, D., L. Wakefield, and A. Phillips, Independent regulation o f transforming growth factor-betal transcription and translation by glucose and platelet-derived growth factor. Am J Pathol, 2002.161(3): p. 1039-49.
    • 125. Sanderson, N., et al., Hepatic expression o f mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci U S A, 1995. 92(7): p. 2572-6.
    • 126. Koch, R.M., et al., Incisional wound healing in transforming growth factorbetal null mice. Wound Repair Regen, 2000. 8(3): p. 179-91.
    • 127. Derynck, R. and X.H. Feng, TGF-beta receptor signaling. Biochim Biophys Acta, 1997.1333(2): p. F I05-50.
    • 128. Ebner, R., et al., Determination o f type I receptor specificity by the type II receptors fo r TGF-beta or activin. Science, 1993. 262(5135): p. 900-2.
    • 129. Moustakas, A. and C.H. Heldin, Non-Smad TGF-beta signals. J Cell Sci, 2005. 118(Pt 16): p. 3573-84.
    • 130. Moustakas, A., S. Souchelnytskyi, and C.H. Heldin, Smad regulation in TGFbeta signal transduction. J Cell Sci, 2 0 0 1 .114(Pt 24): p. 4359-69.
    • 131. Massague, J. and D. Wotton, Transcriptional control by the TGF-beta/Smad signaling system. Embo J, 2000.19(8): p. 1745-54.
    • 147. Mustoe, T.A., et al., A phase II study to evaluate recombinant platelet-derived growth factor-BB in the treatment o f stage 3 and 4 pressure ulcers. Arch Surg, 1994.129(2): p. 213-9.
    • 148. Kurban, R.S. and J. Bhawan, Histologic changes in skin associated with aging. J Dermatol Surg Oncol, 1990.16(10): p. 908-14.
    • 149. Lavker, R.M., P.S. Zheng, and G. Dong, Aged skin: a study by light, transmission electron, and scanning electron microscopy. J Invest Dermatol, 1987. 88(3 Suppl): p. 44s-51s.
    • 150. Ellis, I.R., A.M. Schor, and S.L. Schor, EGF AND TGF-[alpha] motogenic activities are mediated by the EGF receptor via distinct matrix-dependent mechanisms. Experimental Cell Research, 2007. 313(4): p. 732-741.
    • 151. Stem, R. and H.I. Maibach, Hyaluronan in skin: aspects o f aging and its pharmacologic modulation. Clinics in Dermatology, 2008. 26(2): p. 106-122.
    • 152. Almond, A., Hyaluronan. Cell Mol Life Sci, 2007. 64(13): p. 1591-6.
    • 153. Stem, R., Hyaluronan catabolism: a new metabolic pathway. European Journal o f Cell Biology, 2004. 83(7): p. 317-325.
    • 154. Weigel, P.H., V.C. Hascall, and M. Tammi, Hyaluronan synthases. J Biol Chem, 1997. 272(22): p. 13997-4000.
    • 155. Reed, R.K., K. Lilja, and T.C. Laurent, Hyaluronan in the rat with special reference to the skin. Acta Physiol Scand, 1988.134(3): p. 405-11.
    • 156. Chen, W.Y.J. and G. Abatangelo, Functions o f hyaluronan in wound repair. Wound Repair and Regeneration, 1999. 7(2): p. 79-89.
    • 157. Toole, B.P., Hyaluronan is notju st a goo! The Journal o f Clinical Investigation, 2000.106(3): p. 335-336.
    • 158. Girish, K.S. and K. Kemparaju, The magic glue hyaluronan and its eraser hyaluronidase: A biological overview. Life Sciences, 2007. 80(21): p. 1921- 1943.
    • 159. Meran, S., et al., Involvement o f hyaluronan in regulation o f fibroblast phenotype. J Biol Chem, 2007. 282(35): p. 25687-97.
    • 160. Meran, S., et al., Hyaluronan Facilitates Transforming Growth Factor-Plmediated Fibroblast Proliferation. Journal of Biological Chemistry, 2008. 283(10): p. 6530-6545.
    • 161. Webber, J., et al., Modulation o f TGFbetal-dependent myofibroblast differentiation by hyaluronan. Am J Pathol, 2009.175(1): p. 148-60.
    • 162. Webber, J., et al., Hyaluronan orchestrates transforming growth factor-betaldependent maintenance o f myofibroblast phenotype. J Biol Chem, 2009. 284(14): p. 9083-92.
    • 163. Toole, B.P., Hyaluronan in morphogenesis. Semin Cell Dev Biol, 2001. 12(2): p. 79-87.
    • 164. Longaker, M.T., et al., Studies in feta l wound healing. V. A prolonged presence o f hyaluronic acid characterizes feta l wound fluid. Ann Surg, 1991. 213(4): p. 292-6.
    • 165. Noble, P.W., Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biology, 2002. 21(1): p. 25-29.
    • 166. Toole, B.P., Hyaluronan promotes the malignant phenotype. Glycobiology, 2002.12(3): p. 37R-42R.
    • 188. Day, A.J. and G.D. Prestwich, Hyaluronan-bindingproteins: tying up the giant. J Biol Chem, 2002. 277(7): p. 4585-8.
    • 189. Spicer, A.P., A. Joo, and R.A. Bowling, Jr., A hyaluronan binding link protein gene fam ily whose members are physically linked adjacent to chondroitin sulfate proteoglycan core protein genes: the missing links. J Biol Chem, 2003. 278(23): p. 21083-91.
    • 190. Lesley, J., et al., TSG-6 Modulates the Interaction between Hyaluronan and Cell Surface CD44. J Biol Chem, 2004. 279(24): p. 25745-25754.
    • 191. Blundell, C.D., et al., Determining the Molecular Basis fo r the pH-dependent Interaction between the Link Module o f Human TSG-6 and Hyaluronan. J Biol Chem, 2007. 282(17): p. 12976-12988.
    • 192. Blundell, C.D., et al., Determining the Molecular Basis fo r the pH-dependent Interaction between the Link Module o f Human TSG-6 and Hyaluronan. Journal o f Biological Chemistry, 2007. 282(17): p. 12976-12988.
    • 193. Selbi, W., et al., Characterization o f hyaluronan cable structure and function in renal proximal tubular epithelial cells. Kidney Int, 2006. 70(7): p. 1287-1295.
    • 194. Selbi, W., et al., Overexpression o f Hyaluronan Synthase 2 Alters Hyaluronan Distribution and Function in Proximal Tubular Epithelial Cells. J Am Soc Nephrol, 2006.17(6): p. 1553-1567.
    • 195. Milner, C.M. and A.J. Day, TSG-6: a multifunctional protein associated with inflammation. J Cell Sci, 2003.116(10): p. 1863-1873.
    • 196. Turley, E.A., P.W. Noble, and L.Y.W. Bourguignon, Signaling Properties o f Hyaluronan Receptors. J Biol Chem, 2002.277(7): p. 4589-4592.
    • 197. Rouschop, K.M.A., et al., CD44 Disruption Prevents Degeneration o f the Capillary Network in Obstructive Nephropathy via Reduction o f TGF-betalInduced Apoptosis. J Am Soc Nephrol, 2006.17(3): p. 746-753.
    • 198. Huebener, P., et al., CD44 Is Critically Involved in Infarct Healing by Regulating the Inflammatory and Fibrotic Response. J Immunol, 2008. 180(4): p. 2625-2633.
    • 199. DeGrendele, H.C., P. Estess, and M.H. Siegelman, Requirement fo r CD44 in activated T cell extravasation into an inflammatory site. Science, 1997. 278(5338): p. 672-5.
    • 200. Vachon, E., et al., CD44 is a phagocytic receptor. Blood, 2006. 107(10): p. 4149-58.
    • 201. Acharya, P.S., et al., Fibroblast migration is mediated by CD44-dependent TGFjbeta) activation. J Cell Sci, 2008.121(9): p. 1393-1402.
    • 202. Zhu, D. and L.Y. Bourguignon, Interaction between CD44 and the repeat domain o f ankyrin promotes hyaluronic acid-mediated ovarian tumor cell migration. J Cell Physiol, 2000.183(2): p. 182-95.
    • 203. Bourguignon, L.Y.W., et al., Hyaluronan Promotes Signaling Interaction between CD44 and the Transforming Growth Factor beta Receptor I in Metastatic Breast Tumor Cells. J Biol Chem, 2002. 277(42): p. 39703-39712.
    • 204. Bourguignon, L.Y.W., P.A. Singleton, and F. Diedrich, Hyaluronan-CD44 Interaction with Racl-dependent Protein Kinase N-{gamma} Promotes Phospholipase C{gamma} 1 Activation, Ca2+ Signaling, and CortactinCytoskeleton Function Leading to Keratinocyte Adhesion and Differentiation. 2004. p. 29654-29669.
    • 205. Bourguignon, L.Y.W., E. Gilad, and K. Peyrollier, Heregulin-mediated ErbB2- ERK Signaling Activates Hyaluronan Synthases Leading to CD44-dependent Ovarian Tumor Cell Growth and Migration. Journal o f Biological Chemistry, 2007. 282(27): p. 19426-19441.
    • 206. Bourguignon, L.Y.W., et al., Hyaluronan-CD44 Interaction with Leukemiaassociated RhoGEF and Epidermal Growth Factor Receptor Promotes Rho/Ras Co-activation, Phospholipase CIju-Ca2+ Signaling, and Cytoskeleton Modification in Head and Neck Squamous Cell Carcinoma Cells. Journal of Biological Chemistry, 2006. 281(20): p. 14026-14040.
    • 207. Bourguignon, L.Y.W., Hyaluronan-mediated CD44 activation o f RhoGTPase signaling and cytoskeleton function promotes tumor progression. Seminars in Cancer Biology, 2008.18(4): p. 251-259.
    • 208. Bourguignon, L.Y., P.A. Singleton, and F. Diedrich, Hyaluronan-CD44 interaction with Racl-dependent protein kinase N-gamma promotes phospholipase Cgammal activation, Ca(2+) signaling, and cortactincytoskeleton function leading to keratinocyte adhesion and differentiation. J Biol Chem, 2004. 279(28): p. 29654-69.
    • 209. Ito, T., et al., Hyaluronan Regulates Transforming Growth Factor-{beta}l Receptor Compartmentalization. J Biol Chem, 2004. 279(24): p. 25326-25332.
    • 210. Ito, T., et al., Hyaluronan Attenuates Transforming Growth Factor-{beta}lMediated Signaling in Renal Proximal Tubular Epithelial Cells. Am J Pathol, 2004.164(6): p. 1979-1988.
    • 211. Turley, E.A. and S. Roth, Interactions between the carbohydrate chains o f hyaluronate and chondroitin sulphate. Nature, 1980. 283(5744): p. 268-71.
    • 212. Evanko, S.P., J.C. Angello, and T.N. Wight, Formation o f Hyaluronan- and Versican-Rich Pericellular Matrix Is Required fo r Proliferation and Migration o f Vascular Smooth Muscle Cells. Arterioscler Thromb Vase Biol, 1999. 19(4): p. 1004-1013.
    • 213. Evanko, S.P., et al., Hyaluronan-dependentpericellular matrix. Advanced Drug Delivery Reviews, 2007. 59(13): p. 1351-1365.
    • 214. Toole, B.P., Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews Cancer, 2004. 4(7): p. 528-539.
    • 215. Clarris, B.J. and J.R. Fraser, On the pericellular zone o f some mammalian cells in vitro. Exp Cell Res, 1968. 49(1): p. 181-93.
    • 216. Evanko, S.P., et al., Hyaluronan-dependent pericellular matrix. Advanced Drug Delivery Reviews. In Press, Corrected Proof.
    • 217. Knudson, C.B., Hyaluronan receptor-directed assembly o f chondrocyte pericellular matrix. J Cell Biol, 1993.120(3): p. 825-34.
    • 218. LeBaron, R.G., D.R. Zimmermann, and E. Ruoslahti, Hyaluronate binding properties ofversican. J Biol Chem, 1992. 267(14): p. 10003-10.
    • 219. Knudson, C.B., Hyaluronan and CD44: strategic players fo r cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res C Embryo Today, 2003. 69(2): p. 174-96.
    • 220. Bentley, J.P., Rate o f chondroitin sulfate formation in wound healing. Ann Surg, 1967.165(2): p. 186-91.
    • 221. Knudson, C.B. and W. Knudson, Hyaluronan-binding proteins in development, tissue homeostasis, and disease. Faseb J, 1993. 7(13): p. 1233-41.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article