Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Baker, Jillian G.; Hill, Stephen J.; Summers, Roger J. (2011)
Publisher: Elsevier BV
Journal: Trends in Pharmacological Sciences
Languages: English
Types: Article
Subjects: Toxicology, Review, Pharmacology
Sir James Black developed β-blockers, one of the most useful groups of drugs in use today. Not only are they being used for their original purpose to treat angina and cardiac arrhythmias, but they are also effective therapeutics for hypertension, cardiac failure, glaucoma, migraine and anxiety. Recent studies suggest that they might also prove useful in diseases as diverse as osteoporosis, cancer and malaria. They have also provided some of the most useful tools for pharmacological research that have underpinned the development of concepts such as receptor subtype selectivity, agonism and inverse agonism, and ligand-directed signalling bias. This article examines how β-blockers have evolved and indicates how they might be used in the future.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Black, J. (2010) A life in new drug research. Br. J. Pharmacol. 160 (Suppl. 1), S15-S25
    • 2 Black, J.W. et al. (1985) An operational model of pharmacological agonism: the effect of E/[A] curve shape on agonist dissociation constant estimation. Br. J. Pharmacol. 84, 561-571
    • 3 Lyall, J. (2010) James Black: Nobel prize winning pharmacologist who invented b blockers. Br. Med. J. 340, c1817
    • 4 Ahlquist, R.P. (1948) A study of the adrenotropic receptors. Am. J. Physiol. 153, 586-600
    • 5 Powell, C.E. and Slater, I.H. (1958) Blocking of inhibitory adrenergic receptors by a dichloro analog of isoproterenol. J. Pharmacol. Exp. Ther. 122, 480-488
    • 6 Black, J.W. et al. (1965) Comparison of some properties of pronethalol and propranolol. Br. J. Pharmacol. Chemother 25, 577-591
    • 7 Black, J.W. and Prichard, B.N. (1973) Activation and blockade of badrenoceptors in common cardiac disorders. Br. Med. Bull. 29, 163-167
    • 8 Prichard, B.N. (1964) Hypotensive action of pronethalol. Br. Med. J. 1, 1227-1228
    • 9 Prichard, B.N. and Gillam, P.M. (1964) Use of propranolol (Inderal) in treatment of hypertension. Br. Med. J. 2, 725-727
    • 10 Prichard, B.N. (1978) The second Lilly Prize Lecture, University of Newcastle, July 1977. (b-Adrenergic receptor blockade in hypertension, past, present and future. Br. J. Clin. Pharmacol. 5, 379-399
    • 11 (1986) Randomised trial of intravenous atenolol among 16 027 cases of suspected acute myocardial infarction: ISIS-1. First International Study of Infarct Survival Collaborative Group. Lancet 2, 57-66.
    • 12 (1982) A randomized trial of propranolol in patients with acute myocardial infarction. I. Mortality results. J Am Med Assoc 247, 1707-1714.
    • 13 Dargie, H.J. (2001) Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet 357, 1385-1390
    • 14 Hjalmarson, A. et al. (1981) Effect on mortality of metoprolol in acute myocardial infarction A double-blind randomised trial. Lancet 2, 823- 827
    • 15 Pedersen, T.R. (1985) Six-year follow-up of the Norwegian Multicenter Study on Timolol after Acute Myocardial Infarction. N. Engl. J. Med. 313, 1055-1058
    • 16 Black, H.R. et al. (2010) The foundation role of b-blockers across the cardiovascular disease spectrum: a year 2009 update. Am. J. Med. 123, S2
    • 17 Selzman, C.H. et al. (2001) The case for b-adrenergic blockade as prophylaxis against perioperative cardiovascular morbidity and mortality. Arch. Surg. 136, 286-290
    • 18 Echahidi, N. et al. (2008) Mechanisms, prevention, and treatment of atrial fibrillation after cardiac surgery. J. Am. Coll. Cardiol. 51, 793- 801
    • 19 Shantsila, E. et al. (2006) Atrial fibrillation post-cardiac surgery: changing perspectives. Curr. Med. Res. Opin. 22, 1437-1441
    • 20 Crystal, E. et al. (2004) Interventions for preventing post-operative atrial fibrillation in patients undergoing heart surgery. Cochrane Database Syst. Rev. CD003611
    • 21 Auerbach, A.D. and Goldman, L. (2002) b-Blockers and reduction of cardiac events in noncardiac surgery: scientific review. J. Am. Med. Assoc. 287, 1435-1444
    • 22 Hollenberg, N.K. (2005) The role of b-blockers as a cornerstone of cardiovascular therapy. Am. J. Hypertens. 18, 165S-168S
    • 23 Aronow, W.S. (2010) Current role of b-blockers in the treatment of hypertension. Expert Opin. Pharmacother. 11, 2599-2607
    • 24 Bangalore, S. et al. (2007) Cardiovascular protection using b-blockers: a critical review of the evidence. J. Am. Coll. Cardiol. 50, 563-572
    • 25 Basile, J.N. (2010) One size does not fit all: the role of vasodilating bblockers in controlling hypertension as a means of reducing cardiovascular and stroke risk. Am. J. Med. 123, S9-15
    • 26 Molenaar, P. et al. (2007) (-)-Adrenaline elicits positive inotropic, lusitropic, and biochemical effects through b2-adrenoceptors in human atrial myocardium from nonfailing and failing hearts, consistent with Gs coupling but not with Gi coupling. Naunyn. Schmiedebergs Arch. Pharmacol. 375, 11-28
    • 27 Bristow, M.R. et al. (1986) b1- and b2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective b1-receptor down-regulation in heart failure. Circ. Res. 59, 297-309
    • 28 Buxton, B.F. et al. (1987) Characterization and autoradiographic localization of b-adrenoceptor subtypes in human cardiac tissues. Br. J. Pharmacol. 92, 299-310
    • 29 Michel, M.C. et al. (2011) Are there functional b3-adrenoceptors in the human heart? Br. J. Pharmacol. 162, 817-822
    • 30 Lee, S. et al. (2008) Genetically changed mice with chronic deficiency or overexpression of the b-adrenoceptors - what can we learn for the therapy of heart failure? Pflugers Arch. 455, 767-774
    • 31 van Veldhuisen, D.J. and Poole-Wilson, P.A. (2001) The underreporting of results and possible mechanisms of 'negative' drug trials in patients with chronic heart failure. Int. J. Cardiol. 80, 19-27
    • 32 Waagstein, F. et al. (1975) Effect of chronic b-adrenergic receptor blockade in congestive cardiomyopathy. Br. Heart J. 37, 1022-1036
    • 33 Swedberg, K. et al. (1979) Prolongation of survival in congestive cardiomyopathy by b-receptor blockade. Lancet 1, 1374-1376
    • 34 (1999) The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353, 9-13.
    • 35 (1999) Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353, 2001-2007.
    • 36 Packer, M. et al. (2002) Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation 106, 2194-2199
    • 37 Flather, M.D. et al. (2005) Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur. Heart J. 26, 215-225
    • 38 Ellison, K.E. and Gandhi, G. (2005) Optimising the use of badrenoceptor antagonists in coronary artery disease. Drugs 65, 787-797
    • 39 Cruickshank, J.M. (2007) Are we misunderstanding b-blockers. Int. J. Cardiol. 120, 10-27
    • 40 The Beta-Blocker Evaluation of Survival Trial Investigators (2001) A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N. Engl. J. Med. 344, 1659-1667.
    • 41 The Xamoterol in Severe Heart Failure Study Group (1990) Xamoterol in severe heart failure. Lancet 336, 1-6.
    • 42 Maack, C. et al. (2000) Different intrinsic activities of bucindolol, carvedilol and metoprolol in human failing myocardium. Br. J. Pharmacol. 130, 1131-1139
    • 43 Andreka, P. et al. (2002) Bucindolol displays intrinsic sympathomimetic activity in human myocardium. Circulation 105, 2429-2434
    • 44 Stamper, R.L. et al. (2002) Primary drug treatment for glaucoma: bblockers versus other medications. Surv. Ophthalmol. 47, 63-73
    • 45 Limmroth, V. and Michel, M.C. (2001) The prevention of migraine: a critical review with special emphasis on b-adrenoceptor blockers. Br. J. Clin. Pharmacol. 52, 237-243
    • 46 Gray, R.N. et al. (1999) Drug Treatments for the Prevention of Migraine Headache, Agency for Health Care Policy and Research (US)
    • 47 Turner, P. (1989) Therapeutic uses of b-adrenoceptor blocking drugs in the central nervous system in man. Postgrad. Med. J. 65, 1-6
    • 48 Mehta, G. et al. (2010) Developments and controversies in the management of oesophageal and gastric varices. Gut 59, 701-705
    • 49 Uitti, R.J. (1998) Medical treatment of essential tremor and Parkinson's disease.. Geriatrics 53, 47-53
    • 50 Feely, J. and Peden, N. (1984) Use of b-adrenoceptor blocking drugs in hyperthyroidism. Drugs 27, 425-446
    • 51 Pasco, J.A. et al. (2004) b-Adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J. Bone Miner. Res. 19, 19-24
    • 52 Schlienger, R.G. et al. (2004) Use of b-blockers and risk of fractures. J. Am. Med. Assoc. 292, 1326-1332
    • 53 Rejnmark, L. et al. (2006) Treatment with b-blockers ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J. Hypertens. 24, 581-589
    • 54 Schoo, M. et al. (2005) Use of b-blockers is associated with BMD and fracture risk. Bone 36, 129-130
    • 55 Bonnet, N. et al. (2007) Protective effect of b-blockers in postmenopausal women: influence on fractures, bone density, micro and macroarchitecture. Bone 40, 1209-1216
    • 56 Yang, S. et al. (2011) Association between b-blocker use and fracture risk: The Dubbo Osteoporosis Epidemiology Study. Bone 48, 451-455
    • 57 de Vries, F. et al. (2007) Use of b-blockers and the risk of hip/femur fracture in the United Kingdom and The Netherlands. Calcif. Tissue Int. 80, 69-75
    • 58 Lavasseur, R. et al. (2005) b-Blocker use, bone mineral density and fracture risk in older women: results from the Epidemiologie de L'Osteoporose Prospective Study. J. Am. Geriatr. Soc. 53, 550-552
    • 59 Reid, I.R. et al. (2005) b-Blocker use, BMD, and fractures in the study of osteoporotic fractures. J. Bone Miner. Res. 20, 613-618
    • 60 Meisinger, C. et al. (2007) b-Blocker use and risk of fractures in men and women from the general population: the MONICA/KORA Augsburg cohort study. Osteoporos. Int. 18, 1189-1195
    • 61 Minkowitz, B. et al. (1991) Effects of propranolol on bone metabolism in the rat. J. Orthop. Res. 9, 869-875
    • 62 Takeda, S. et al. (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305-317
    • 63 Bonnet, N. et al. (2005) Alteration of trabecular bone under chronic b2- agonists treatment. Med. Sci. Sports Exerc. 37, 1493-1501
    • 64 Elefteriou, F. (2008) Regulation of bone remodeling by the central and peripheral nervous system. Arch. Biochem. Biophys. 473, 231-236
    • 65 Huang, H.H. et al. (2009) Functional a1- and b2-adrenergic receptors in human osteoblasts. J. Cell. Physiol. 220, 267-275
    • 66 Bonnet, N. et al. (2008) Adrenergic control of bone remodeling and its implications for the treatment of osteoporosis. J. Musculoskelet Neuronal Interact. 8, 94-104
    • 67 Algazi, M. et al. (2004) [Could treatments with b-blockers be associated with a reduction in cancer risk?]. Rev. Epidemiol. Sante Publique 52, 53-65
    • 68 Perron, L. et al. (2004) Antihypertensive drug use and the risk of prostate cancer (Canada). Cancer Causes Cont. 15, 535-541
    • 69 Sloan, E.K. et al. (2010) The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 70, 7042- 7052
    • 70 Sood, A.K. et al. (2010) Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J. Clin. Invest. 120, 1515-1523
    • 71 Rajagopal, S. et al. (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov. 9, 373-386
    • 72 Harrison, T. et al. (2003) Erythrocyte G protein-coupled receptor signaling in malarial infection. Science 301, 1734-1736
    • 73 Murphy, S.C. et al. (2006) Erythrocyte G protein as a novel target for malarial chemotherapy. PLoS Med. 3, e528
    • 74 Decalmer, P.B. et al. (1978) b-Blockers, asthma. Br. Heart J. 40, 184- 189
    • 75 van den Bergh, J.H. and van Herwaarden, C.L. (1981) Ventilatory effects of ordinary and slow-release tablets of metoprolol in asthmatic patients. Eur. J. Respir. Dis. 62, 168-172
    • 76 Greefhorst, A.P. and van Herwaarden, C.L. (1981) Comparative study of the ventilatory effects of three b1-selective blocking agents in asthmatic patients. Eur. J. Clin. Pharmacol. 20, 417-421
    • 77 Lofdahl, C.G. and Svedmyr, N. (1981) Cardioselectivity of atenolol and metoprolol A study in asthmatic patients. Eur. J. Respir. Dis. 62, 396-404
    • 78 Clague, H.W. et al. (1984) Influence of cardioselectivity and respiratory disease on pulmonary responsiveness to b-blockade. Eur. J. Clin. Pharmacol. 27, 517-523
    • 79 Lofdahl, C.G. and Svedmyr, N. (1984) Effects of xamoterol (ICI 118,587) in asthmatic patients. Br. J. Clin. Pharmacol. 18, 597-601
    • 80 Lammers, J.W. et al. (1986) Respiratory tolerance of bisoprolol and metoprolol in asthmatic patients. J. Cardiovasc. Pharmacol. 8 (Suppl. 11), S69-S73
    • 81 Lammers, J.W. et al. (1986) A comparative study on the ventilatory and haemodynamic effects of xamoterol and atenolol in asthmatic patients. Br. J. Clin. Pharmacol. 22, 595-602
    • 82 Philip-Joet, F. et al. (1986) Comparative study of the respiratory effects of two b1-selective blocking agents atenolol and bevantolol in asthmatic patients. Eur. J. Clin. Pharmacol. 30, 13-16
    • 83 Miki, A. et al. (2003) Betaxolol-induced deterioration of asthma and a pharmacodynamic analysis based on b-receptor occupancy. Int. J. Clin. Pharmacol. Ther. 41, 358-364
    • 84 Benson, M.K. et al. (1978) A comparison of four b-adrenoceptor antagonists in patients with asthma. Br. J. Clin. Pharmacol. 5, 415-419
    • 85 Kotlyar, E. et al. (2002) Tolerability of carvedilol in patients with heart failure and concomitant chronic obstructive pulmonary disease or asthma. J. Heart Lung Transplant. 21, 1290-1295
    • 86 Devereux, G. et al. (1998) Adverse effects of a single dose of (+)-sotalol in patients with mild stable asthma. Br. J. Clin. Pharmacol. 46, 79-82
    • 87 Chafin, C.C. et al. (1999) b-Blockers after myocardial infarction: do benefits ever outweigh risks in asthma? Cardiology 92, 99-105
    • 88 Hanania, N.A. et al. (2008) The safety and effects of the b-blocker, nadolol, in mild asthma: an open-label pilot study. Pulm. Pharmacol. Ther. 21, 134-141
    • 89 Bond, R.A. et al. (2007) Getting to the heart of asthma: can 'b blockers' be useful to treat asthma? Pharmacol. Ther. 115, 360-374
    • 90 Baker, J.G. (2005) The selectivity of b-adrenoceptor antagonists at the human b1 b2 and b3 adrenoceptors. Br. J. Pharmacol. 144, 317- 322
    • 91 Hoffmann, C. et al. (2004) Comparative pharmacology of human badrenergic receptor subtypes - characterization of stably transfected receptors in CHO cells. Naunyn. Schmiedebergs Arch. Pharmacol. 369, 151-159
    • 92 Arch, J.R.S. (2000) b3-Adrenoceptor ligands and the pharmacology of the b3-adrenoceptor.. In The b3-Adrenoceptor (Strosberg, A.D., ed.), Taylor & Francis 48-76
    • 93 Smith, C. and Teitler, M. (1999) b-Blocker selectivity at cloned human b1- and b2-adrenergic receptors. Cardiovasc. Drugs Ther. 13, 123-126
    • 94 Schnabel, P. et al. (2000) Binding properties of b-blockers at recombinant b1-b2-, and b3-adrenoceptors.. J. Cardiovasc. Pharmacol. 36, 466-471
    • 95 Baker, J.G. (2010) The selectivity of b-adrenoceptor agonists at human b1-b2- and b3-adrenoceptors.. Br. J. Pharmacol. 160, 1048- 1061
    • 96 Michel, M.C. et al. (2010) Tissue functions mediated by b3- adrenoceptors - findings and challenges. Naunyn. Schmiedebergs Arch. Pharmacol. 382, 103-108
    • 97 Jasper, J.R. et al. (1990) Amplification of cyclic AMP generation reveals agonistic effects of certain b-adrenergic antagonists. Mol. Pharmacol. 37, 44-49
    • 98 Jasper, J.R. et al. (1988) Molecular mechanism of b-adrenergic receptor blockers with intrinsic sympathomimetic activity. FASEB J. 2, 2891-2894
    • 99 Joseph, S.S. et al. (2003) Intrinsic sympathomimetic activity of (-)- pindolol mediated through a (-)-propranolol-resistant site of the b1- adrenoceptor in human atrium and recombinant receptors. Naunyn. Schmiedebergs Arch. Pharmacol. 368, 496-503
    • 100 Baker, J.G. et al. (2003) Agonist actions of 'b-blockers' provide evidence for two agonist activation sites or conformations of the human b1-adrenoceptor. Mol. Pharmacol. 63, 1312-1321
    • 101 Baker, J.G. (2005) Sites of action of b-ligands at the human b1- adrenoceptor. J. Pharmacol. Exp. Ther. 313, 1163-1171
    • 102 Bundkirchen, A. et al. (2002) Bucindolol exerts agonistic activity on the propranolol-insensitive state of b1-adrenoceptors in human myocardium. J. Pharmacol. Exp. Ther. 300, 794-801
    • 103 Granneman, J.G. (2001) The putative b4-adrenergic receptor is a novel state of the b1-adrenergic receptor. Am. J. Physiol. Endocrinol. Metab. 280, E199-202
    • 104 Molenaar, P. (2003) The 'state' of b-adrenoceptors. Br. J. Pharmacol. 140, 1-2
    • 105 Kaumann, A.J. (1989) Is there a third heart b-adrenoceptor? Trends Pharmacol. Sci. 10, 316-320
    • 106 Baker, J.G. (2005) Evidence for a secondary state of the human b3- adrenoceptor. Mol. Pharmacol. 68, 1645-1655
    • 107 Arch, J.R. and Kaumann, A.J. (1993) b3 and atypical b-adrenoceptors. Med. Res. Rev. 13, 663-729
    • 108 Kaumann, A.J. (1983) [Cardiac b-receptors - experimental aspects]. Z. Kardiol. 72, 63-82
    • 109 Pak, M.D. and Fishman, P.H. (1996) Anomalous behavior of CGP 12177A on (1-adrenergic receptors. J. Recept. Signal Transduct. Res. 16, 1-23
    • 110 Walter, M. et al. (1984) Stimulant and blocking effects of optical isomers of pindolol on the sinoatrial node and trachea of guinea pig Role of b-adrenoceptor subtypes in the dissociation between blockade and stimulation.. Naunyn. Schmiedebergs Arch. Pharmacol. 327, 159-175
    • 111 Kaumann, A.J. and Blinks, J.R. (1980) b-Adrenoceptor blocking agents as partial agonists in isolated heart muscle: dissociation of stimulation and blockade. Naunyn. Schmiedebergs Arch. Pharmacol. 311, 237-248
    • 112 Konkar, A.A. et al. (2000) Aryloxypropanolamine and catecholamine ligand interactions with the b1-adrenergic receptor: evidence for interaction with distinct conformations of b1-adrenergic receptors. J. Pharmacol. Exp. Ther. 294, 923-932
    • 113 Lewis, C.J. et al. (2004) Overexpression of b1-adrenoceptors in adult rat ventricular myocytes enhances CGP 12177A cardiostimulation: implications for 'putative' b4-adrenoceptor pharmacology. Br. J. Pharmacol. 141, 813-824
    • 114 Freestone, N.S. et al. (1999) b4-Adrenoceptors are more effective than b1-adrenoceptors in mediating arrhythmic Ca2+ transients in mouse ventricular myocytes. Naunyn. Schmiedebergs Arch. Pharmacol. 360, 445-456
    • 115 Kaumann, A.J. and Molenaar, P. (2008) The low-affinity site of the b1- adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol. Ther. 118, 303-336
    • 116 Cohen, M.L. et al. (2000) b3-receptors mediate relaxation in stomach fundus whereas a fourth b receptor mediates tachycardia in atria from transgenic b3-receptor knockout mice. Receptors Channels 7, 17-23
    • 117 Kaumann, A.J. et al. (2001) Abolition of (-)-CGP 12177-evoked cardiostimulation in double b1-/b2-adrenoceptor knockout mice Obligatory role of b1-adrenoceptors for putative b4-adrenoceptor pharmacology. Naunyn. Schmiedebergs Arch. Pharmacol. 363, 87-93
    • 118 Kaumann, A.J. and Molenaar, P. (1997) Modulation of human cardiac function through 4 b-adrenoceptor populations. Naunyn. Schmiedebergs Arch. Pharmacol. 355, 667-681
    • 119 Chidiac, P. et al. (1994) Inverse agonist activity of b-adrenergic antagonists. Mol. Pharmacol. 45, 490-499
    • 120 Azzi, M. et al. (2003) b-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G proteincoupled receptors. Proc. Natl. Acad. Sci. U.S.A. 100, 11406-11411
    • 121 Baker, J.G. et al. (2003) Agonist and inverse agonist actions of bblockers at the human b2-adrenoceptor provide evidence for agonistdirected signaling. Mol. Pharmacol. 64, 1357-1369
    • 122 Swaminath, G. et al. (2005) Probing the b2-adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J. Biol. Chem. 280, 22165-22171
    • 123 Evans, B.A. et al. (2011) Ligand-directed signalling at badrenoceptors. Br. J. Pharmacol. 159, 1022-1038
    • 124 Kenakin, T. (2010) Functional selectivity and biased receptor signaling. J. Pharmacol. Exp. Ther. 336, 296-302
    • 125 Wisler, J.W. et al. (2007) A unique mechanism of b-blocker action: carvedilol stimulates b-arrestin signaling. Proc. Natl. Acad. Sci. U.S.A. 104, 16657-16662
    • 126 Galandrin, S. and Bouvier, M. (2006) Distinct signaling profiles of b1- and b2-adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol. Pharmacol. 70, 1575-1584
    • 127 Sato, M. et al. (2007) Ligand-directed signaling at the b3-adrenoceptor produced by 3-(2-ethylphenoxy)-1-[(1S)-1,2,3,4-tetrahydronapth-1- ylamino]-2S-2-propanol oxalate (SR 59230A) relative to receptor agonists. Mol. Pharmacol. 72, 1359-1368
    • 128 Sato, M. et al. (2008) The b3-adrenoceptor agonist 4-[[(hexylamino) carbonyl]amino]-N-[4-[2-[[(2S)-2-hydroxy-3-(4-hydroxyphenoxy)propyl] amino]ethyl]-phenyl]-benzenesulfonamide (L755507) and antagonist (S)-N-[4-[2-[[3-[3-(acetamidomethyl)phenoxy]-2-hydroxy propyl] amino]-ethyl] phenyl]benzenesulfonamide (L748337) activate different signaling pathways in Chinese hamster ovary-K1 cells stably expressing the human b3-adrenoceptor. Mol. Pharmacol. 74, 1417-1428
    • 129 Galandrin, S. et al. (2008) Conformational rearrangements and signaling cascades involved in ligand-biased MAPK signaling through the b1-adrenergic receptor. Mol. Pharmacol. 74, 162-172
    • 130 Kim, I.M. et al. (2008) b-Blockers alprenolol and carvedilol stimulate b-arrestin-mediated EGFR transactivation. Proc. Natl. Acad. Sci. U.S.A. 105, 14555-14560
    • 131 Hutchinson, D.S. et al. (2006) Agonist effects of zinterol at the mouse and human b3-adrenoceptor. Naunyn. Schmiedebergs Arch. Pharmacol. 373, 158-168
    • 132 Black, J.W. and Leff, P. (1983) Operational models of pharmacological agonism. Proc. R. Soc. Lond. B: Biol. Sci. 220, 141-162
    • 133 Kenakin, T. and Miller, L.J. (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev. 62, 265-304
    • 134 Evans, B.A. et al. (2010) Quantification of functional selectivity at the human a1A-adrenoceptor. Mol. Pharmacol. 79, 298-307
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • NHMRC | Understanding G Protein-C...
  • RCUK | Use of fluorescence correl...
  • WT

Cite this article