LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
O'Driscoll, Mark (2008)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
Aicardi-Goutieres syndrome (AGS) is an unusual condition that clinically mimics a congenital viral infection. Several genes have recently been implicated in the aetiology of this disorder. One of these genes encodes the DNA exonuclease TREX1. Recent work from Yang, Lindahl and Barnes has provided insight into the cellular consequence of TREX1-deficiency. They found that TREX1-deficiency resulted in the intracellular accumulation of single stranded DNA resulting in chronic activation of the DNA damage response network, even in cells from Trex1-mutated AGS patients. Here, I summarise their findings and discuss them in context with the other AGS causative genes which encode subunits of the RNase H2 complex. I describe mechanisms by which the inappropriate intracellular accumulation of nucleic acid species might deleteriously impact upon normal cell cycle progression. Finally, using the example of Systemic Lupus Erythematosus (SLE), I also summarise the evidence suggesting that the failure to process intermediates of nucleic acid metabolism can result in the activation of uncontrolled autoimmunity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] [2] [3] [4] J. Aicardi and F. Goutieres A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis., Ann Neurol 15 (1984) 49-54.
    • Wassmer, B. Weschke, M.L. Whiteford, M.A.A. Willemsen, A. Zankl, S.M. Zuberi, S. Orcesi, E. Fazzi, P. Lebon and Y.J. Crow Clinical and Molecular Phenotype of Aicardi-Goutières Syndrome, American journal of human genetics 81 (2007) 713-725.
    • Till, J.L. Tolmie, P. Tomlin, T. Voit, B. Weschke, C.G. Woods, P. Lebon, D.T. Bonthron, C.P. Ponting and A.P. Jackson Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection, Nat Genet 38 (2006) 910-916.
    • Cowan, S.G. Frints, J. Klepper, J.H. Livingston, S.A. Lynch, R.F. Massey, J.F. Meritet, J.L. Michaud, G. Ponsot, T. Voit, P. Lebon, D.T. Bonthron, A.P. Jackson, D.E. Barnes and T. Lindahl Mutations in the gene encoding the 3[prime]-5[prime] DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus, Nat Genet 38 (2006) 917-920.
    • [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] Y.-G. Yang, T. Lindahl and D.E. Barnes Trex1 Exonuclease Degrades ssDNA to Prevent Chronic Checkpoint Activation and Autoimmune Disease, Cell 131 (2007) 873-886.
    • D. Chowdhury, P.J. Beresford, P. Zhu, D. Zhang, J.-S. Sung, B. Demple, F.W. Perrino and J. Lieberman The Exonuclease TREX1 Is in the SET Complex and Acts in Concert with NM23-H1 to Degrade DNA during Granzyme A-Mediated Cell Death, Molecular Cell 23 (2006) 133-142.
    • P.T. Tran, N. Erdeniz, L.S. Symington and R.M. Liskay EXO1-A multitasking eukaryotic nuclease, DNA Repair 3 (2004) 1549-1559.
    • T. Lindahl, J.A. Gally and G.M. Edelman Deoxyribonuclease IV: A New Exonuclease from Mammalian Tissues, Proceedings of the National Academy of Sciences 62 (1969) 597-603.
    • Y. Liu, H.-I. Kao and R.A. Bambara FLAP ENDONUCLEASE 1: A Central Component of DNA Metabolism, Annual Review of Biochemistry 73 (2004) 589-615.
    • T. Lindahl, J.A. Gally and G.M. Edelman Properties of Deoxyribonuclease III from Mammalian Tissues, J. Biol. Chem. 244 (1969) 5014-5019.
    • I.V. Shevelev and U. Hubscher The 3[prime]-5[prime] exonucleases, Nat Rev Mol Cell Biol 3 (2002) 364-376.
    • M. Höss, P. Robins, P. Naven, D. Pappin, J. Sgouros and T. Lindahl A human DNA editing enzyme homologous to the Escherichia coli DnaQ/MutD protein. EMBO Journal 18 (1999) 3868-3875.
    • D.J. Mazur and F.W. Perrino Identification and Expression of the TREX1 and TREX2 cDNA Sequences Encoding Mammalian 3'rightarrow5' Exonucleases, J. Biol. Chem. 274 (1999) 19655-19660.
    • D.J. Mazur and F.W. Perrino Excision of 3' Termini by the Trex1 and TREX2 3'-5' Exonucleases. Characterization of the recombinant proteins, J. Biol. Chem. 276 (2001) 17022-17029.
    • M.-J. Chen, S.-M. Ma, L.C. Dumitrache and P. Hasty Biochemical and cellular characteristics of the 3' -> 5' exonuclease TREX2, Nucl. Acids Res. 35 (2007) 2682-2694.
    • Ruiz, J. Lloberas, M.J. Macias, I. Fita and A. Celada Structure of the Dimeric Exonuclease TREX1 in Complex with DNA Displays a Prolinerich Binding Site for WW Domains, J. Biol. Chem. 282 (2007) 14547- 14557.
    • Hollis The Crystal Structure of TREX1 Explains the 3' Nucleotide Specificity and Reveals a Polyproline II Helix for Protein Partnering, J.
    • Biol. Chem. 282 (2007) 10537-10543.
    • Daly, T. Lindahl and D.E. Barnes Gene-Targeted Mice Lacking the Trex1 (DNase III) 3'->5' DNA Exonuclease Develop Inflammatory Myocarditis, Mol. Cell. Biol. 24 (2004) 6719-6727.
    • J. Qiu, Y. Qian, P. Frank, U. Wintersberger and B. Shen Saccharomyces cerevisiae RNase H(35) Functions in RNA Primer Removal during Lagging-Strand DNA Synthesis, Most Efficiently in Cooperation with Rad27 Nuclease, Mol. Cell. Biol. 19 (1999) 8361-8371.
    • [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] exonuclease TREX1 are associated with systemic lupus erythematosus, Nat Genet 39 (2007) 1065-1067.
    • Hubner A mutation in TREX1 that impairs susceptibility to granzyme Amediated cell death underlies familial chilblain lupus, Journal of Molecular Medicine 85 (2007) 531-537.
    • Y. Liu, A. Rusinol, M. Sinensky, Y. Wang and Y. Zou DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A, J Cell Sci 119 (2006) 4644-4649.
    • Tryggvason and Z. Zhou Genomic instability in laminopathy-based premature aging, Nat Med 11 (2005) 780-785.
    • L. Zou, D. Liu and S.J. Elledge Replication protein A-mediated recruitment and activation of Rad17 complexes, Proc Natl Acad Sci U S A 100 (2003) 13827-13832.
    • L. Zou and S.J. Elledge Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes, Science 300 (2003) 1542-1548.
    • A. Jazayeri, J. Falck, C. Lukas, J. Bartek, G.C.M. Smith, J. Lukas and S.P. Jackson ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks, Nat Cell Biol 8 (2006) 37-45.
    • Concannon, M. O'Driscoll and P. Jeggo ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling, EMBO J. 25 (2006) 5775-5782.
    • T. Stiff, Reis, C, Alderton, G.K, Woodbine, L, O'Driscoll, M, Jeggo, P.A Nbs1 is required for ATR-dependent phosphorylation events., EMBO J 24 (2005) 199-208.
    • G.K. Alderton, Galbiati, L, Griffith, E, Surinya, K.H, Neitzel, H, Jackson, A.P, Jeggo, P.A, O'Driscoll, M. Regulation of mitotic entry by microcephalin and its overlap with ATR signalling, Nature Cell Biology 8 (2006) 725-733.
    • G.K. Alderton, Joenje, H, Varon, R, Borglum, A D, Jeggo, P A, O'Driscoll, M. Seckel syndrome exhibits cellular features demonstrating defects in the ATR signalling pathway, Human Molecular Genetics 13 (2004) 3127-3138.
    • Goodship A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome, Nature Genetics 33 (2003) 497-501.
    • M. O'Driscoll and P.A. Jeggo Clinical Impact of ATR Checkpoint Signalling Failure in Humans, Cell Cycle 2 (2003) 194-195.
    • Jackson and M. O'Driscoll Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling, Nat Genet advanced online publication (2007).
    • [53] [54] M. O Driscoll, W.B. Dobyns, J.M. van Hagen and P.A. Jeggo Cellular and Clinical Impact of Haploinsufficiency for Genes Involved in ATR Signaling, American journal of human genetics 81 (2007) 77-86.
    • Oosterhuis, A. Gschwendter, M. Dichgans, K.E. Kotschet, S. Hodgkinson, T.A. Hardy, M.B. Delatycki, R.A. Hajj-Ali, P.H. Kothari, S.F. Nelson, R.R. Frants, R.W. Baloh, M.D. Ferrari and J.P. Atkinson C-terminal truncations in human 3[prime]-5[prime] DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy, Nat Genet 39 (2007) 1068-1070.
    • S.-i. Tsukumo and K. Yasutomo DNaseI in pathogenesis of systemic lupus erythematosus, Clinical Immunology 113 (2004) 14-18.
    • A.L. Brennan and D.M. Geddes Bringing new treatments to the bedside in cystic fibrosis, Pediatric Pulmonology 37 (2004) 87-98.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article