LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hubert, Cedric; Kubiak, Krzysztof; Bigerelle, Maxence; Dubar, Laurent (2014)
Publisher: Scientific Net
Languages: English
Types: Article
Subjects: TJ
This paper proposes a new method of 3D roughness peaks curvature radius calculation and its application to tribological contact analysis as a characteristic signature of tribological contact. This method is introduced through the classical approach of calculation of radius of asperity in 2D. Actually, the proposed approach provides a generalization of Nowicki's method [ ], depending on horizontal lines intercepting the studied profile. Here, the basic idea consists in intercepting the rough surface by a horizontal plane and to calculate the cross section area without including “islands into islands”, i.e. the small peaks enclosed in bigger ones. Then, taking into account the maximal value of the height amplitude of the roughness included into this area, an appropriate algorithm is proposed, without requiring the classical hypothesis of derivability, which may be unstable when applied to engineering surfaces. This methodology is validated on simulated surfaces, and applied to engineering surfaces created experimentally, with a laboratory aluminium strip drawing process. The regions of the textured and lubricated specimens surface are analysed, and the results gives interesting prospects to qualitatively identify the local lubrication regimes: regions with high curvature radii correspond to severe contact (boundary/mixed lubrication regime) while regions with low curvature radii correspond to hydrodynamic lubrication regime.

Share - Bookmark

Cite this article