Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Commander, Nicola Jane
Languages: English
Types: Doctoral thesis
This thesis describes design, construction and evaluation in a BALB/c mouse\ud model, for five novel Brucella specific DNA vaccines.\ud Brucellosis is worldwide zoonosis of economic significance that poses a\ud significant threat to both animal and human health. Vaccination of livestock can\ud be valuable for reducing transmission and facilitating control. Development of\ud an efficacious non-living vaccine is therefore a valuable goal in brucellosis\ud research.\ud Five candidate antigens were identified within the Brucella melitensis 16M\ud genome. In silico selection was supported by confirming transcription of the\ud selected genes from cultured Brucella, and evidence of candidate protein\ud immunogenicity in Brucella infected sheep. Eukaryotic and prokaryotic\ud expression plasmids were constructed for each candidate antigen. The\ud protective efficacy of six DNA vaccine constructs was evaluated in a BALB/c\ud model of brucellosis. From this evaluation, two protective antigens were\ud identified for further study: Invasion protein B and the 25 kDa outer membrane\ud protein. The DNA vaccines p-omp25 and p-ialB were shown to have equivalent\ud protective efficacy in the mouse model to that achieved through vaccination with\ud the live vaccine strain Rev.1. DNA vaccine mediated protection was associated\ud with production of specific antibodies and priming of both CD4+ and CD8+ IFN-y\ud secreting cells. High numbers of CD8+ cells were observed for the p-omp25\ud vaccine, whereas CD4+ cells and antibodies were more prevalent following pialB\ud vaccination. The vaccines were found to be most effective when three\ud homologous booster vaccinations were used. Single dose vaccination afforded\ud only modest levels of protection. Attempts to improve delivery of DNA vaccines\ud through adsorption of DNA to cationic liposomes was partially successful in that\ud there was a notable increase in specific humoral immune responses. However,\ud these increases were not associated with increased cell mediated immunity or\ud protective efficacy.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Crawford. R. MO!Van De Verg. L.. Yuan. L.. Hadfield. T. L.. Warren. R. L.. Drazek. E. 50! Houng. H. H..
    • Hammack. C.. Sasala. KO!Polsinelli. TO!Thompson. J. & Hoover. D. L. 1996. Deletion of purE attenuates Brucella melitensis infection in mice. Infect Immun 64: 2188-92.
    • Davis. H. L. & Whalen. R. G. 1995. DNA-based immunization. Mol Cell Bioi Hum Dis Ser 5: 368-87.
    • De Rose. RO!Tennent. JO! McWaters. PO! Chaplin. P. JO! Wood. P. RO! Kimpton. WO! Cahill. R. & Scheerlinck. J. P. 2002. Efficacy of DNA vaccination by different routes of immunisation in sheep. Vet Immunol Immunopathol 90: 55-63.
    • Delrue. R. MO!Lestrate. PO!Tibor. AO!Letesson. J. J. & De Bolle. X. 2004. Brucella pathogenesis, genes identified from random large-scale screens. FEMS Microblol Lett 231: 1-12.
    • Kyrpides. N. & Overbeek. R. The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci USA 99[1], 443-448. 2002.
    • Degui. S.. Donglou. X. & Jiming. Y. 2002. Epidemiology and control of brucellosis in China. Vet. Micro. 90: 165-182.
    • de Waal MaleM. R.. and Moore. K. W. 1998. Interleukin-10. In Thomson. A. (Ed) The Cytoklne Handbook 3rd Edition (pp 332-364) Doolan. D. L.. Hedstrom. R. C.. Wang. R.. Sedeaah. M.. Scheller. l. FO!Hobart. PII Norman. J. A. & Hoffman. S. L. 1997. DNA vaccines for malaria: the past, the present, & the future. Indian J Med Re. 106: 109-19.
    • Domand. J.. Gross. A .. Lafont. V .. Liautard. JO!Oliaro. J. & Liautard. J. P. 2002. The innate immune response against Brucella in humans. Vet Mlcroblol 90: 383-94.
    • Dornand. JO!Lafont. VOlOUaro. JO!Terraza. AO!Castaneda-Roldan. E. & Llautard. J. p. 2004. Impairment of intramacrophagic Brucella suis multiplication by human natural killer cells through a contact-dependent mechanism. Infect Immun 72: 2303-11.
    • Duclos. A. & Desjardins. M. Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell Mlcroblol. 2(51,365-377. 2000.
    • Duran-Ferrer. MO!Leon, L.. Nielsen, K.. Caporale, VOlMendoza. JO!Osun •. AO!perales. AO!Smith. PII peFrutos. C., Gomez-Martin, BO!Lucas. AO!Chico. RO!pelgado. 0, pO! Escabill. J. CII Arrogante. LII PlazParra. R. & Garrido. F. 2004. Antibody response and antigen-specific gamma-interferon profiles of vaccinated and unvaccinated pregnant sheep experimentally Infected with Brucella melitensis. Vet Mlcroblol100: 219-31.
    • Edelson. B. T .. Cossart. P. & Unanue. E. R. 1999. Cutting edge: paradigm resistance to Listeria infection. J Immunol163: 4087-90.
    • Edmonds. M. D .. Cloeckaert. A .. Booth. N. J .. Fulton. W. T.. Hagiu$. S. D .. Walker. J. V. 8. Elzer. P. H.
    • 2001. Attenuation of a Brucella abortus mutant lacking a major 25 kDa outer membrane protein in cattle.
    • Am. J. Vet. Res. 62: 1461-1466.
    • Edmonds. M. D.. Hagius. S. D.. Samartino. L. E .. Fulton. W. T .. Walker. J. V .. Enright. F. MoeBooth. N. J. 8.
    • Elzer. P. H. 2002. Pathogenicity and protective activity in pregnant goats of a Brucella melitensis .1Omp25 deletion mutant. Res. Vet. Sci. 72: 235-239.
    • Eduardo Luna-Martinez. J. 2002. Brucellosis in Mexico: current status and trends. Vet. Micro. 90: 19-30.
    • Eko. F. 0 .. He. Q., Brown. T., McMillan. L., Ifere. G. 0 .. Ananaba. G. A., Lyn. D .. Lubitz. W., Kellar. K. L..
    • Black. C. M., and Igietseme. J. U. 2004. A novel recombinant multisubunit vaccine against Chlamydia. J Immunol 173, 3375-82.
    • Enright. F. M. 1990. The pathogenesis and pathobiology of Brucella infection in domestic Nielsen and Duncan (Eds) Animal Brucellosis. (pp. 301-320). CRe Press.
    • Feigner. P. L. & Rhodes. G. 1991. Gene therapeutics. Nature 349: 351-2.
    • Felnerova. D .. Viret. J. F.. Gluck. R. & Moser. C. 2004. Liposomes and virosomes as delivery systems for antigens. nucleic acids and drugs. Curr Opln Blotechnol15: 518-29.
    • Feltguate. D. M. 1998. DNA Vaccines: vector design. delivery. and antigen presentation. J Cell Blochem Suppl 30-31: 304-11.
    • Fernandes. D. M .. Jiang. X .. Jung. J. H. & Baldwin. C. l. 1996. Comparison of T cell cytokines in resistant and susceptible mice infected with virulent Brucella abortus strain 2308. FEMS Immunol Med Microbiol16: 193-203.
    • Fernandez-Lago. L.. Orduna. A. & Vizcaino. N. 2005. Reduced inter1eukin-18 secretion in Brucella abortus 2308-infected murine peritoneal macrophages and in spleen cells obtained from B. abortus 2308-infected mice. J Med Mlcroblol 54: 527-31.
    • Fernandez-Lago. L.. Rodriguez-Tarazona. E. & Vizcaino. N. 1999. Differential secretion of inter1eukin-12 (IL-12) subunits and heterodimeric IL-12p70 protein by CD-1 mice and murine macrophages in response to intracellular infection by Brucella abortus. J Med Mlcroblol 48: 1065-73.
    • Ficht. T. A. 2002. Discovery of Brucella virulence mechanisms using mutational analysis. Vet Mlcroblol 90: 311-5.
    • Fischer. L.. Minke. J .. Dufay. N .. Baudu. P. & Audonnet. J. C. 2003. Rabies DNA vaccine in the horse: strategies to improve serological responses. Vaccine 21: 4593-6.
    • Foulonane. V .. Bourg. G .. Cazevieille, C .. Michaux-Charachon. S. & O'Callaghan. 0.2000. Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 68: 1297-303.
    • 2001. Aromatic compound-dependent Brucella suis is attenuated in both cultured cella and mouse models.
    • Infect Immun 69: 547-50.
    • Frenchick. P. J .. Markam. R. J. F. & Cochrane. A. H. 1985. Inhibition of ph ago lysosome fualon In macrophages by soluble extracts of virulent Brucella abortus. Am. J. Vet. Re •. 46: 332-335.
    • Fretin. 0 .. Fauconnier. A .. Kohler. S .. Halling. S .. Leonard. S. & Niiskens, C. 2005. The sheathed flagellum of B. melitensis is involved in persistence in a murine model of Infection. Cell Mlcroblol. 7: 687-698.
    • Halling. S. M .. Tatum. F. M. & Bricker. B. J. 1993. Sequence sequence, IS711, from Brucella avis. Gene 133: 123-7.
    • Dricot. A.. Deschamps. C.. Haine. V .. Leonard. 5 .. Laurent. T.. Mertens. P.. Vanden haute. J. & De Bolle.
    • X. 2002. Fun stories about Brucella: the "furtive nasty bug". Vet Microblol 90: 317-28.
    • Letesson. J-J.. De Bolle. X. 2004. Brucella virulence: a matter of control. p117 -158 In Bruce",: Molecular and Cellular Biology (Eds) Lopez-Goni and Moriyon. Pubs: Horizon Bioscience, UK.
    • Lin. J.. Adams, L. G. & Ficht. T. A. 1996. Immunological response to the Brucella abortus GroEL homolog.
    • Infect Immun 64: 4396-400.
    • Lodmell. D. L.. Parnell. M. J.. Bailey. J. R.. Ewalt. L. C. & Hanlon. C. A. 2002. Rabies DNA vaccination of non-human primates: post-exposure studies using gene gun methodology that accelerates induction of neutralizing antibody and enhances neutralizing antibody titers. Vaccine 20: 2221-8.
    • Lopez-Goni. I.. Guzman-Verri. C.. Manterola. L.. Soia-Landa. A.. Moriyon. I. & Moreno. E. 2002.
    • Regulation of Brucella virulence by the two-component system BvrR/BvrS. Vet Mlcrobiol 90: 329-39.
    • Lowrie. D. B.. Tascon. R. Ell Bonato. V. L.. Lima. V. M .. Faccioli. L. H.. Stavropoulos, Ell Colston. M. JII Hewinson. R. Gil Moelling. K. & Silva. C. L. 1999. Therapy of tuberculosis in mice by DNA vaccination.
    • Nature 400: 269-71.
    • Lowrie. D. B.. Tascon. R. E.. Colston, M. J. & Silva. C. L. 1994. Towards a DNA vaccine against tuberculosis. Vaccine 12: 1537-40.
    • Lozes, E.. Huygen, K.. Content. J .. Denis. 0 .. Montgomery, D. L.. Yawrnan, A. M .. Vandenbussche. PII Van Vooren. J. P.. Drowart. A .. Ulmer. J. B. & Liu. M. A. 1997. Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vaccine 15: 830-3.
    • Mackaness, G. B. 1971. Resistance to intracellular infection. J Infect Dis 123: 439-45.
    • Madkour. M. Monir. 2001: Madkours brucellosis. 2nd Edition. Springer-Verlag, Bertin Heidelberg. 2001.
    • Martin, E., Roche, P. W .. Triccas. J. A. & Britton, W. J. 2001. DNA encoding a single mycobacterial antigen protects against leprosy infection. Vaccine 19: 1391-6.
    • McDermott. J. J. & Arimi. S. M. 2002. Brucellosis in Sub-Saharan Africa: epidemiology. control and impact.
    • Vet. Micro. 90: 111-134.
    • Meyer. K. F. & Shaw. E. B. 1920. A comparison of the cultural and biochemical characteristics of B.
    • abortus and B. melitensis. J. Infect. Dis. 27: 173.
    • D. & Ramuz. M. 1997. Genome structure and phylogeny in the genus Brucella. J Bacterlol179: 3244-9.
    • Mielke. M. E. 1991. T cell subsets in granulomatous inflammation and immunity to L. Monocytogenes B. abortus. Behring Inst Mitt 99-111.
    • 1999. Enhanced protective response and immuno-adjuvant effects of porcine GM-CSF on DNA vaccination of pigs against Aujeszky's disease virus. Vet Immunollmmunopathol 70: 277-87.
    • Splitter, G., Oliveira, S., Carey, M.. Miller, C., Ko. J. & Covert, J. 1996. T lymphocyte mediated protection against facultative intracellular bacteria. Vet Immunollmmunopathol 54: 309·19.
    • Stack, J. A., Perret. lo lo & Commander. N. J. Brucellosis and Ovine Epididymitis. Proc. 6th Int. Sheep Vet. Soc. 6. 2005.
    • Stevens. M. G.. Pugh. G. W. Jr & Tabatabai. lo B. 1992. Effects of gamma interferon and indomethacin in preventing Brucella abortus infections in mice. Infect Immun 60: 4407·9.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article