LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lv, Y.; Pan, Q.; Bligh, S.W.A.; Li, H.; Wu, H; Sang, Qingqing; Zhu, Li-Min (2017)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: UOWSAT
In this work, a smart drug delivery system of core–sheath nanofiber is reported. The core-sheath nanofibers were prepared with thermoresponsive poly-(N-isopropylacrylamide) (PNIPAAm) (as core) and hydrophobic ethylcellulose (EC) (as sheath) by coaxial electrospinning. Analogous medicated fibers were prepared by loading with a model drug ketoprofen (KET). The fibers were cylindrical without phase separation and have visible core-sheath structure as shown by scanning and transmission electron microscopy. X-ray diffraction patterns demonstrated the drug with the amorphous physical form was present in the fiber matrix. Fourier transform infrared spectroscopy analysis was conducted, finding that there were significant intermolecular interactions between KET and the polymers. Water contact angle measurements proved that the core-sheath fibers from hydrophobic transformed into hydrophobic when the temperature reached the lower critical solution temperature. In vitro drug-release study of nanofibers with KET displayed that the coaxial nanofibers were able to synergistically combine the characteristics of the two polymers producing a temperature-sensitive drug delivery system with sustained release properties. In addition, they were established to be non-toxic and suitable for cell growth. These findings show that the core–sheath nanofiber is a potential candidate for controlling drug delivery system.

Share - Bookmark

Cite this article