Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rezk, Ahmed; Al-Dadah, Raya; Mahmoud, Saad; Elsayed, Ahmed (2012)
Publisher: Elsevier
Journal: International Journal of Heat and Mass Transfer
Languages: English
Types: Article
Subjects: Fluid Flow and Transfer Processes, Mechanical Engineering, Condensed Matter Physics, TJ, T1
Silica gel/water adsorption cooling systems suffer from size, performance and cost limitations. Therefore, there is a need for new adsorbent materials that outperform silica gel. Metal organic frameworks (MOFs) are new micro-porous materials that have extraordinary porosity and uniform structure. Due to the lack of published data that characterise MOF/water adsorption, this paper experimentally investigates the adsorption characteristics of HKUST-1 (Cu-BTC (copper benzene-1,3,5-tricarboxylate), C18H6Cu3O12) and MIL-100 (Fe-BTC (Iron 1,3,5-benzenetricarboxylate), C9H3FeO6) MOFs compared to silica gel RD-2060. The adsorption characteristics of Silica gel RD-2060, HKUST-1 and MIL-100 were determined using an advanced gravimetric dynamic vapour sorption analyser (DVS). Results showed that HKUST-1 performed better than silica gel RD-2060 with an increase of water uptake of 93.2%, which could lead to a considerable increase in refrigerant flow rate, cooling capacity and/or reducing the size of the adsorption system. However, MIL-100 MOF showed reduced water uptake comparable to silica gel RD-2060 for water chilling applications with evaporation at 5 0C. These results highlight the potential of using MOF materials to improve the efficiency of water adsorption cooling systems
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Z.Z. Xia, C.J. Chen, J.K. Kiplagat, Adsorption equilibrium of water on silica gel, J. Chem. Eng. Data 53 (2008) 2462-2465.
    • [2] L.X. Gong, R.Z. Wang, Z.Z. Xia, Adsorption equilibrium of water on a composite adsorbent employing lithium chloride in silica gel, J. Chem. Eng. Data 55 (2010) 2920-2923.
    • [3] Chen, C.J., Wang, R.Z.,Z. Xia, Z., Study on a silica gel-water adsorption chiller integrated with a closed wet cooling tower, Int. J. Thermal Sci. 49 611-620.
    • [4] S. Li, J.Y. Wu, Theoretical research of a silica gel-water adsorption chiller in a micro combined cooling, heating and power (CCHP) system, Appl. Energy 86 (2009) 958-967.
    • [5] R.J.H. Grisel, S.F. Smeding, R.D. Boer, Waste heat driven silica gel/water adsorption cooling in trigeneration, Appl. Therm. Eng. 30 (2010) 1039-1046.
    • [6] R.D. Boer, S. Smeding, S. Mola, Silica gel-water adsorption cooling prototype system for mobile air conditioning. Heat powered cycles, 2009. Technische Universtat, Berlin.
    • [7] U. Jakob, W. Mittelbach, Development and investigation of a compact silica gel/ water adsorption chiller integrated in solar cooling systems, in: VII Minsk International, seminar, 2008.
    • [8] W.S. Chang, C.C. Wang, C.C. Shieh, Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller, Appl. Therm. Eng. 29 (2009) 2100-2105.
    • [9] S.K. Henninger, H.A. Habib, C. Janiak, MOFs as adsorbents for low temperature heating and cooling applications, J. Am. Chem. Soc. (2009) 2776-2777.
    • [10] S.K. Henninger, F.P. Schmidt, H.M. Henning, Water adsorption characteristics of novel materials for heat transformation applications, Appl. Therm. Eng. 30 (2010) 1692-1702.
    • [11] H.T. Chua, K.C. Ng, A. Malek, Multi-bed regenerative adsorption chiller â€'' improving the utilization of waste heat and reducing the chilled water outlet temperature fluctuation, Int. J. Refrig. 24 (2001) 124-136.
    • [12] zycon. . HubPages 2012 [cited].
    • [13] D. Saha, S. Deng, Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177, J. Colloid Interface Sci. 348 (2010) 615-620.
    • [14] D. Saha, S. Deng, Hydrogen adsorption on metal-organic framework MOF-177, Tsinghua Sci. Technol. 15 (2010) 363-376.
    • [15] S. Deng, Sorbent technology, Encyclopedia of, chemical processing. http:// dx.doi.org/10.1081/E-ECHP-120007963 (2006) 2825-2845.
    • [16] T. Grant Glover, G.W. Peterson, B.J. Schindler, MOF-74 building unit has a direct impact on toxic gas adsorption, Chem. Eng. Sci., (in press).
    • [17] P. Küsgens, M. Rose, I. Senkovska, Characterization of metal-organic frameworks by water adsorption, Microporous Mesoporous Mater. 120 (2009) 325-330.
    • [18] S. Qiu, G. Zhu, Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties, Coord. Chem. Rev. 253 (2009) 2891-2911.
    • [19] Q. Min Wang, D. Shen, M. Bülow, Metallo-organic molecular sieve for gas separation and purification, Microporous Mesoporous Mater. 55 (2002) 217- 230.
    • [20] X.L. Wang, H.T. Chua, L.Z. Gao, A thermogravimetric analyzer for condensable gas adsorption under subatospheric conditions, J. Therm. Anal. Calorim. 90 (2007) 935-940.
    • [21] X. Wang, W. Zimmermann, K.C. Ng, Investigation on the isotherm of silica gel+water systems TG and volumetric methods, J. Therm. Anal. Calorim. 76 (2004) 659-669.
    • [22] A. Raymond, S. Garimella, Intraparticle mass transfer in adsorption heat pumps: limitations of the linear driving force approximation, J. Heat Transfer 133 (2011) 042001-42013.
    • [23] I.I. El-Sharkawy, B.B. Saha, S. Koyama, A study on the kinetics of ethanolactivated carbon fiber: theory and experiments, Int. J. Heat Mass Transfer 49 (2006) 3104-3110.
    • [24] Y.I. Aristov, M.M. Tokarev, A. Freni, Kinetics of water adsorption on silica Fuji Davison RD, Microporous Mesoporous Mater. 96 (2006) 65-71.
    • [25] Y.I. Aristov, I.S. Glaznev, A. Freni, Kinetics of water sorption on SWS-1L (calcium chloride confined to mesoporous silica gel): influence of grain size and temperature, Chem. Eng. Sci. 61 (2006) 1453-1458.
    • [26] B.B. Saha, I.I. El-Sharkawy, A. Chakraborty, Study on an activated carbon fiberethanol adsorption chiller: Part I - System description and modelling, Int. J. Refrig. 30 (2007) 86-95.
    • [27] H.T. Chua, K.C. Ng, A. Malek, Modeling the performance of two bed, silica gelwater adsorption chiller, Int. J. Refrig. 22 (1999) 194-204.
    • [28] B.B. Saha, S. Koyama, T. Kashiwagi, Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system, Int. J. Refrig. 26 (2003) 749-757.
    • [29] B.B. Saha, A. Chakaborty, S. Koyama, A new generation cooling device employing CaCl2-in-silica gel-water system, Int. J. Heat Mass Transfer 52 (2009) 516-524.
    • [30] D.M. Ruthven, Principles of Adsorption and Adsorption Process, First ed., John Wiely & Sons, New York, 1984. pp. 45-70.
    • [31] I.I. Elsharkawy, B.B. saha, S. Koyama, Experimental investigation on activated carbon-ethanol pair for solar powered adsorption cooling applications, Int. J. Refrig. 31 (2008) 1407-1413.
    • [32] C.-I. Lin, L.-H. Wang, Rate equations and isotherms for two adsorption models, J. Chin. Inst. Chem. Eng, 39 (2008) 579-585.
    • [33] M. Llano-Restrepo, M.n.A. Mosquera, Accurate correlation, thermochemistry, and structural interpretation of equilibrium adsorption isotherms of water vapor in zeolite 3A by means of a generalized statistical thermodynamic adsorption model, Fluid Phase Equilib. 283 (2009) 73-88.
    • [34] F. Stoeckli, T. Jakubov, Water adsorption in active carbons described by the Dubinin-Astakhov equation, J. Chem. Soc. Faraday Trans. 90 (1994) 783-786.
    • [35] J.J. Mahle, An adsorption equilibrium model for Type 5 isotherms, Carbon 40 (2002) 2753-2759.
    • [36] B.B. Saha, E.C. Boelman, T. Kashiwagi, Computer simulation of a silica gelwater adsorption refrigeration cycle - the influence of operating conditions on cooling output and COP, ASHRAE Trans. 101 (1995) 348-357.
    • [37] B.B. Saha, E.C. Boelman, T. Kashiwagi, Computational analysis of an advanced adsorption-refrigeration cycle, Energy 20 (1995) 983-994.
    • [38] Y. Hamamoto, K.C.A. Alam, B.B. Saha, Study on adsorption refrigeration cycle utilizing activated carbon fibers. Part 2. Cycle performance evaluation, Int. J. Refrig. 29 (2006) 315-327.
    • [39] O.M. Akpa, E.I. Unuabonah, Small-sample corrected akaike information criterion: an appropriate statistical tool for ranking of adsorption isotherm models, Desalination 272 (2011) 20-26.
    • [40] X. Wang, H.T. Chua, Two bed silica gel-water adsorption chillers: an effectual lumped parameter model, Int. J. Refrig. 30 (2007) 1417-1426.
    • [41] A. Akahira, K.C.A. Alam, Y. Hamamoto, Mass recovery adsorption refrigeration cycle-improving cooling capacity, Int. J. Refrig. 27 (2004) 225-234.
    • [42] A.S. Uyun, A. Akisawa, T. Miyazaki, Numerical analysis of an advanced threebed mass recovery adsorption refrigeration cycle, Appl. Therm. Eng. 29 (2009) 2876-2884.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article