LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Oven, Robert (2015)
Languages: English
Types: Article
Subjects: T
Planar refractive index profiles with rapid variations, formed in glass, are measured with interferometry. This involves forming a bevel in the glass and orientating the fringe pattern to be normal to the bevel edge. The index profile is determined by differentiation of the phase function of the fringe pattern. The differentiation has been performed using the total variation regularization method in order to preserve rapid changes in the derivative. This new approach avoids the necessity of filtering, in order to reduce noise, in the direction perpendicular to the bevel, which would otherwise smooth out the rapid index changes. The method is assessed using a model refractive index profile that contains an index gradient of 0.24 μm−1 and is then applied practically to measure the refractive index profile of electrically poled BK7 glass. The new approach allows the sharp transition in the index between poled and unpoled glass to be observed as well as the accumulation of potassium ions beyond the poled glass region.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Tonova, D.; Paneva, A.; Pantchev, B. Opt. Commun. 1998, 150, 121-125.
    • [2] Townsend, P.D.; Chandler, P.J.; Zhang, L. Optical Effects of Ion Implantation; Cambridge Studies in Modern Optics; Cambridge University Press: Cambridge, 1994. ISBN 0-521-39430-9.
    • [3] Cardin, J.; Leduc, D. Appl. Opt. 2008, 47, 894-900.
    • [4] Chiang, K.S. J. Lightwave Technol. 1985, 3, 385-391.
    • [5] Lilienhof, H.J.; Voges, E.; Ritter, D.; Pantschew, B. IEEE J. Quantum Electron. 1982, 18, 1877-1883.
    • [6] Steffen, J.; Neyer, A.; Voges, E.; Hecking, N. Appl. Opt. 1990, 29, 4468-4472.
    • [7] Goldberg, L. Appl. Opt. 1981, 20, 3580-3588.
    • [8] Mrozek, P.; Mrozek, E.; Lukaszewicz, T. Appl. Opt. 2006, 45, 756-763.
    • [9] Fazio, E.; Ramadan, W.A.; Bertolotti, M. Opt. Lett. 1996, 21, 1238-1240.
    • [10] Sochacka, M.; Lopez Lago, E.; Jaroszewicz, Z. Appl. Opt. 1994, 33, 3342-3347.
    • [11] Darudi, A.; Hosseini, S.M.R.S. Opt. Lasers Eng. 2008, 47, 133-138.
    • [12] Oven, R. Appl. Opt. 2009, 48, 5704-5712.
    • [13] Oven, R. Appl. Opt. 2010, 49, 4228-4236.
    • [14] Kemao, Q. Opt. Lasers Eng. 2007, 45, 304-317.
    • [15] Takeda, M.; Ina, H.; Kobayashi, S. J. Opt. Soc. Am. 1982, 72, 156-160.
    • [16] Chartrand, R. ISRN Appl. Mech., 2011, 2011, 164564-1- 164564-11. DOI: 10.5402/2011/164564.
    • [17] Legarda-Saenz, R.; Brito-Loeza, C.; Espinosa-Romero, A. Appl. Opt. 2014, 53, 2297-2301.
    • [18] Yañez-Mendiola, J.; Servı́n, M.; Malacara-Hernández, D. Opt. Commun. 2000, 178, 291-296.
    • [19] Brennand, A.L.R.; Wilkinson, J.S. Opt. Lett. 2002, 27, 906-908.
    • [20] An, H.; Fleming, S. Appl. Phys. Lett. 2006, 89, 181111-1-181111-3.
    • [21] Lipovskii, A.A.; Rusan, V.V.; Tagantsev, D.K. Solid State Ionics 2010, 181, 849-855.
    • [22] Petrov, M.I.; Lepen'kin, Y.A.; Lipovskii, A.A. J. Appl. Phys. 2012, 112, 043101.
    • [23] Miliou, A.N.; Srivastava, R.; Ramaswamy, R.V. Appl. Opt. 1991, 30, 674-681.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article