Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Vyushin, Dmitry I.; Fioletov, Vitali E.; Shepherd, Theodore G. (2007)
Publisher: American Geophysical Union
Languages: English
Types: Article
Total ozone trends are typically studied using linear regression models that assume a first-order autoregression of the residuals [so-called AR(1) models]. We consider total ozone time series over 60°S–60°N from 1979 to 2005 and show that most latitude bands exhibit long-range correlated (LRC) behavior, meaning that ozone autocorrelation functions decay by a power law rather than exponentially as in AR(1). At such latitudes the uncertainties of total ozone trends are greater than those obtained from AR(1) models and the expected time required to detect ozone recovery correspondingly longer. We find no evidence of LRC behavior in southern middle-and high-subpolar latitudes (45°–60°S), where the long-term ozone decline attributable to anthropogenic chlorine is the greatest. We thus confirm an earlier prediction based on an AR(1) analysis that this region (especially the highest latitudes, and especially the South Atlantic) is the optimal location for the detection of ozone recovery, with a statistically significant ozone increase attributable to chlorine likely to be detectable by the end of the next decade. In northern middle and high latitudes, on the other hand, there is clear evidence of LRC behavior. This increases the uncertainties on the long-term trend attributable to anthropogenic chlorine by about a factor of 1.5 and lengthens the expected time to detect ozone recovery by a similar amount (from ∼2030 to ∼2045). If the long-term changes in ozone are instead fit by a piecewise-linear trend rather than by stratospheric chlorine loading, then the strong decrease of northern middle- and high-latitude ozone during the first half of the 1990s and its subsequent increase in the second half of the 1990s projects more strongly on the trend and makes a smaller contribution to the noise. This both increases the trend and weakens the LRC behavior at these latitudes, to the extent that ozone recovery (according to this model, and in the sense of a statistically significant ozone increase) is already on the verge of being detected. The implications of this rather controversial interpretation are discussed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Beran, J. (1994), Statistics for Long-Memory Processes, CRC Press, Boca Raton, Fla.
    • Beran, J., R. I. Bhansali, and D. Ocker (1998), On unified model selection for stationary and nonstationary short- and long-memory autoregressive processes, Biometrika, 85, 921 - 934.
    • Bloomfield, P. (1992), Trends in global temperature, Clim. Change, 21, 1 - 16.
    • Bodeker, G. E., B. J. Connor, J. B. Liley, and W. A. Matthews (2001), The global mass of ozone: 1978 - 1998, Geophys. Res. Lett., 28, 2819 - 2822.
    • Chipperfield, M. P. (2003), A three-dimensional model study of long-term mid-high latitude lower stratosphere ozone changes, Atmos. Chem. Phys., 3, 1253 - 1265.
    • Dhomse, S., M. Weber, I. Wohltmann, M. Rex, and J. P. Burrows (2006), On the possible causes of recent increases in Northern Hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003, Atmos. Chem. Phys., 6, 1165 - 1180.
    • Fioletov, V. E., and T. G. Shepherd (2005), Summertime total ozone variations over middle and polar latitudes, Geophys. Res. Lett., 32, L04807, doi:10.1029/2004GL022080.
    • Fioletov, V. E., G. E. Bodeker, A. J. Miller, R. D. McPeters, and R. Stolarski (2002), Global and zonal total ozone variations estimated from groundbased and satellite measurements: 1964 - 2000, J. Geophys. Res., 107(D22), 4647, doi:10.1029/2001JD001350.
    • Fox, R., and M. Taqqu (1988), Large sample properties of parameter estimates for strongly dependent stationary Gaussian time series, Ann. Stat., 17, 1749 - 1766.
    • Frith, S., R. Stolarski, and P. K. Bhartia (2004), Implication of Version 8 TOMS and SBUV Data for Long-Term Trend Analysis, Proceedings of the Quadrennial Ozone Symposium, 1 - 8 June 2004, Kos, Greece, 65 - 66.
    • Geweke, J., and S. Porter-Hudak (1983), The estimation and application of long-memory time series models, J. Time Ser. Anal., 4, 221 - 238.
    • Gil-Alana, L. A. (2005), Statistical modeling of the temperatures in the Northern Hemisphere using fractional integration techniques, J. Climate, 18, 5357 - 5369.
    • Granger, C. W. J. (1980), Long memory relationships and the aggregation of dynamic models, J. Econometrics, 14, 227 - 238.
    • Granger, C. W. J., and R. Joyeux (1980), An introduction to long-memory time series, J. Time Ser. Anal., 1, 15 - 30.
    • Guillas, S., M. L. Stein, D. J. Wuebbles, and J. Xia (2004), Using chemistry transport modeling in statistical analysis of stratospheric ozone trends from observations, J. Geophys. Res., 109, D22303, doi:10.1029/ 2004JD005049.
    • Hadjinicolaou, P., J. A. Pyle, and N. R. P. Harris (2005), The recent turnaround in stratospheric ozone over northern middle latitudes: A dynamical modeling perspective, Geophys. Res. Lett., 32, L12821, doi:10.1029/ 2005GL022476.
    • Hosking, J. R. M. (1981), Fractional differencing, Biometrika, 68, 165 - 176.
    • Hurst, H. E. (1951), Long-term storage capacity of reservoirs, Trans. Am. Soc. Civ. Eng., 116, 770 - 799.
    • Ja´nosi, I. M., and R. Mu¨ller (2005), Empirical mode decomposition and correlation properties of long daily ozone records, Phys. Rev. E, 71, 056126, doi: 10.1103/Phys-838RevE.71.056126.
    • Kantelhardt, J. W., E. Koscielny-Bunde, H. H. A. Rego, S. Havlin, and A. Bunde (2001), Detecting long-range correlations with detrended fluctuation analysis, Physica A, 295, 441.
    • Kolmogorov, A. N. (1940a), Curves in Hilbert space which are invariant with respect to one-parameter group motion, Dokl. Akad. Nauk SSSR, 26, 6 - 9.
    • Kolmogorov, A. N. (1940b), Wiener's spiral and some interesting curves in Hilbert space, Dokl. Akad. Nauk SSSR, 26, 115 - 118.
    • Mandelbrot, B. B., and J. W. Van Ness (1968), Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 422 - 437.
    • Maraun, D., H. W. Rust, and J. Timmer (2004), Tempting long-memoryOn the interpretation of DFA results, Nonlinear Processes Geophys., 11, 495 - 503.
    • Miller, A. J., et al. (2006), Examination of ozonesonde data for trends and trend changes incorporating solar and Arctic oscillation signals, J. Geophys. Res., 111, D13305, doi:10.1029/2005JD006684.
    • Moulines, E., and P. Soulier (2002), Semiparametric spectral estimation for fractional processes, In Theory and Applications of Long-Range Dependence, edited by P. Doukhan, G. Oppenheim, M. S. Taqqu, 251 - 301, Springer, New York.
    • Newchurch, M. J., et al. (2003), Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery, J. Geophys. Res., 108(D16), 4507, doi:10.1029/2003JD003471.
    • Newman, P. A., S. R. Kawa, and E. R. Nash (2004), On the size of the Antarctic ozone hole, Geophys. Res. Lett., 31, L21104, doi:10.1029/ 2004GL020596.
    • Parke, W. R. (1999), What is fractional integration?, Rev. Econ. Stat., 81, 632 - 638.
    • Pelletier, J. D. (1997), Analysis and modeling of natural variability of climate, J. Clim., 10, 1331 - 1342.
    • Randel, W. J., and J. B. Cobb (1994), Coherent variations of monthly mean total ozone and lower stratospheric temperature, J. Geophys. Res., 99, 5433 - 5447.
    • Randel, W. J., F. Wu, and R. Stolarski (2002), Changes in column ozone correlated with the stratospheric EP flux, J. Meteorol. Soc. Jpn., 80, 849 - 862.
    • Reinsel, G. C., et al. (2002), On detection of turnaround and recovery in trend for ozone, J. Geophys. Res., 107(D10), 4078, doi:10.1029/ 2001JD000500.
    • Reinsel, G. C., et al. (2005), Trend analysis of total ozone data for turnaround and dynamical contributions, J. Geophys. Res., 110, D16306, doi:10.1029/2004JD004662.
    • Robinson, P. M. (1995a), Log-periodogram regression of time series with long range dependence, Ann. Stat., 23, 1048 - 1072.
    • Robinson, P. M. (1995b), Gaussian estimation of long range dependence, Ann. Stat., 23, 1630 - 1661.
    • Robinson, P. M. (2005), Efficiency improvements in inference on stationary and nonstationary fractional time series, Ann. Stat., 33, 1800 - 1842.
    • Smith, R. L. (1993), Long-range dependence and global warming, In Statistics for the Environment edited by V. Barnett and F. Turkman, 141 - 161, John Wiley, Hoboken, N. J.
    • Smith, R. L., and F.-L. Chen (1996), Regression in long-memory time series, In Athens Conference on Applied Probability and Time Series: Volume II. Time Series Analysis in Memory of E.J. Hannan, edited by P. M. Robinson and M. Rosenblatt. Springer Lecture Notes in Statistics, 115, 378 - 391.
    • Solomon, S., R. W. Portmann, R. R. Garcia, L. W. Thomason, L. R. Poole, and M. P. McCormick (1996), The role of aerosol variations in anthropogenic ozone depletion at northern mid-latitudes, J. Geophys. Res., 101, 6713 - 6728.
    • SPARC (Stratospheric Processes and Their Role in Climate) (1998), SPARC/IOC/GAW Assessment of Trends in the Vertical Distribution of Ozone, edited by N. Harris, R. Hudson, and C. Phillips, SPARC Report No. 1, WMO Global Ozone Research and Monitoring Project Report No. 43, 289 pp., Verrieres le Buisson, France.
    • Stephenson, D. B., V. Pavan, and R. Bojariu (2000), Is the North Atlantic oscillation a random walk?, Int. J. Climatol., 20, 1 - 18.
    • Stolarski, R. S., et al. (1992), Measured trends in stratospheric ozone, Science, 17, 342 - 349, doi:10.1126/science.256.5055.342.
    • Stolarski, R. S., and S. Frith (2006), Search for evidence of trend slowdown in the long-term TOMS/SBUV total ozone data record: The importance of instrument drift uncertainty, Atmos. Chem. Phys., 6, 4057 - 4065.
    • Stolarski, R. S., A. R. Douglass, S. Steenrod, and S. Pawson (2006), Trends in stratospheric ozone: Lessons learned from a 3D chemical transport model, J. Atmos. Sci., 63, 1028 - 1041.
    • Taqqu, M. S. (2002), Fractional Brownian motion and long-range dependence, In Theory and Applications of Long-Range Dependence, edited by P. Doukhan, G. Oppenheim, and M. S. Taqqu, 5 - 38, Springer, New York.
    • Toumi, R., J. Syroka, C. Barnes, and P. Lewis (2001), Robust non-Gaussian statistics and long-range correlation of total ozone, Atmos. Sci. Lett., 2, doi:10.1006/asle.2001.0042.
    • Tsonis, A. A., P. J. Roebber, and J. B. Elsner (1999), Long-range correlations in the extratropical atmospheric circulation: Origins and implications, J. Clim., 12, 1534 - 1541.
    • Varotsos, C., and D. Kirk-Davidoff (2006), Long-memory processes in ozone and temperature variations at the region 60 S - 60 N, Atmos. Chem. Phys., 6, 4093 - 4100.
    • von Storch, H., and F. W. Zwiers (1999), Statistical Analysis in Climate Research, Cambridge Univ. Press, New York.
    • Weatherhead, E. C., and S. B. Andersen (2006), The search for signs of recovery of the ozone layer, Nature, 441, doi:10.1038/nature04746.
    • Weatherhead, E. C., et al. (1998), Factors affecting the detection of trends: Statistical considerations and applications to environmental data, J. Geophys. Res., 103, 17,149 - 17,161.
    • Weatherhead, E. C., et al. (2000), Detecting the recovery of total column ozone, J. Geophys. Res., 105, 22,201 - 22,210.
    • Weiss, A. K., J. Staehelin, C. Appenzeller, and N. R. P. Harris (2001), Chemical and dynamical contributions to ozone profile trends of the Payerne (Switzerland) balloon soundings, J. Geophys. Res., 106, doi:10.1029/2000JD000106.
    • World Meteorological Organization (WMO) (1988), Report of the International Ozone Trends Panel-1988, Global Ozone Research and Monitoring Project, Report No. 18, Geneva, Switzerland.
    • World Meteorological Organization (WMO) (1999), Scientific Assessment of Ozone Depletion: 1998, Global Ozone Research and Monitoring Project, Report No. 44, Geneva, Switzerland.
    • World Meteorological Organization (WMO) (2003), Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project, Report No. 47, Geneva, Switzerland.
    • Yajima, Y. (1988), On estimation of a regression model with long-memory stationary errors, Ann. Stat., 16, 791 - 807.
    • V. E. Fioletov, Environment Canada, 4905 Dufferin St., Toronto, ON M3H 5T4, Canada.
    • T. G. Shepherd and D. I. Vyushin, Department of Physics, University of Toronto, 60 St. George St., Toronto, Ontario M5S 1A7, Canada.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article