Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tripathi, Om P.; Baldwin, Mark; Charlton-Perez, Andrew; Charron, Martin; Cheung, Jacob C. H.; Eckermann, Stephen D.; Gerber, Edwin; Jackson, David R.; Kuroda, Yuhji; Lang, Andrea; Mclay, Justin; Mizuta, Ryo; Reynolds, Carolyn; Roff, Greg; Sigmond, Michael; Son, Seok-Woo; Stockdale, Tim (2016)
Publisher: American Meteorological Society
Languages: English
Types: Article
The first multi-model study to estimate the predictability of a boreal Sudden Stratospheric Warming (SSW) is performed using five NWP systems. During the 2012-2013 boreal winter, anomalous upward propagating planetary wave activity was observed towards the end of December, which followed by a rapid deceleration of the westerly circulation around 2 January 2013, and on 7 January 2013 the zonal mean zonal wind at 60°N and 10 hPa reversed to easterly. This stratospheric dynamical activity was followed by an equatorward shift of the tropospheric jet stream and by a high pressure anomaly over the North Atlantic, which resulted in severe cold conditions in the UK and Northern Europe. In most of the five models, the SSW event was predicted 10 days in advance. However, only some ensemble members in most of the models predicted weakening of westerly wind when the models were initialized 15 days in advance of the SSW. Further dynamical analysis of the SSW shows that this event was characterized by the anomalous planetary wave-1 amplification followed by the anomalous wave-2 amplification in the stratosphere, which resulted in a split vortex occurring between 6 January 2013 and 8 January 2013. The models have some success in reproducing wave-1 activity when initialized 15 days in advance, they but generally failed to produce the wave-2 activity during the final days of the event. Detailed analysis shows that models have reasonably good skill in forecasting tropospheric blocking features that stimulate wave-2 amplification in the troposphere, but they have limited skill in reproducing wave-2 amplification in the stratosphere.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allen, D. R., L. Coy, S. D. Eckermann, J. P. McCormack, G. L. Manney, T. F. Hogan, and Y. J. Kim, 2006: NOGAPS-ALPHA simulations of the 2002 Southern Hemisphere stratospheric major warming. Mon. Wea. Rev., 134, 498-518, doi:10.1175/ MWR3086.1.
    • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031-2048, doi:10.1175/1520-0469(1976)033,2031:PWIHAV.2.0.CO;2.
    • --, and --, 1978: An exact theory of non-linear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609-646, doi:10.1017/ S0022112078002773.
    • --, J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press 489 pp.
    • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys.:Adv. Res. Appl., 17, 173-265, doi:10.1016/B978-0-12-460817-7.50009-4.
    • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 937-30 946, doi:10.1029/ 1999JD900445.
    • --, and --, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581-584, doi:10.1126/science.1063315.
    • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 1132-1161, doi:10.1002/qj.2063.
    • Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603-626, doi:10.1175/2008JAS2677.1.
    • Boville, B. A., and D. P. Baumhefner, 1990: Simulated forecast error and climate drift resulting from the omission of the upper stratosphere in numerical models. Mon. Wea. Rev., 118, 1517- 1530, doi:10.1175/1520-0493(1990)118,1517:SFEACD.2.0.CO;2.
    • Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703-722, doi:10.1002/qj.234.
    • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449-469, doi:10.1175/JCLI3996.1.
    • --, A. O'Neil, W. A. Lahoz, and A. C. Massacand, 2004: Sensitivity of tropospheric forecasts to stratospheric initial conditions. Quart. J. Roy. Meteor. Soc., 130, 1771-1792, doi:10.1256/qj.03.167.
    • Charney, J. G., and N. A. Phillips, 1953: Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J. Meteor., 10, 71-99, doi:10.1175/1520-0469(1953)010,0071: NIOTQG.2.0.CO;2.
    • Chua, B., L. Xu, T. Rosmond, and E. Zaron, 2009: Preconditioning representer-based variational data assimilation systems: Application to NAVDAS-AR. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. K. Park and L. Xu, Eds., Springer-Verlag, 307-319.
    • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759-1782, doi:10.1256/qj.04.101.
    • Dörnbrack, A., M. C. Pitts, L. R. Poole, Y. J. Orsolini, K. Nishii, and H. Nakamura, 2012: The 2009-2010 Arctic stratospheric winter-General evolution, mountain waves and predictability of an operational weather forecast model. Atmos. Chem. Phys., 12, 3659-3675, doi:10.5194/acp-12-3659-2012.
    • Edwards, J., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689-719, doi:10.1002/ qj.49712253107.
    • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313-2329, doi:10.1175/1520-0469(1991)048,2313:ASFRCC.2.0.CO;2.
    • --, and M. Zivkovic-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766-1782, doi:10.1175/1520-0469(1999)056,1766: DAEOAC.2.0.CO;2.
    • Essery, R., M. Best, and P. Cox, 2001: MOSES 2.2 technical documentation. Hadley Centre Tech. Note 30, Met Office, Exeter, United Kingdom.
    • Fraser, J., 2012: APS1 upgrade of the ACCESS-G Numerical Weather Prediction system. NMOC Operations Bull. 93, Bureau of Meteorology, 29 pp. [Available online at http://www.bom.gov.au/ australia/charts/bulletins/apob93.pdf.]
    • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 1483-1506, doi:10.1175/1520-0493(1990)118,1483:AMFCSW.2.0.CO;2.
    • Harshvardhan, R. Davies, D. A. Randall, and T. G. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92, 1009-1016, doi:10.1029/ JD092iD01p01009.
    • Hirooka, T., T. Ichimaru, and H. Mukougawa, 2007: Predictability of stratospheric sudden warmings as inferred from ensemble forecast data: Intercomparison of 2001/02 and 2004/04 winters. J. Meteor. Soc. Japan, 85, 919-925, doi:10.2151/jmsj.85.919.
    • Hitchcock, P., and T. G. Shepherd, 2013: Zonal-mean dynamics of extended recoveries from stratospheric sudden warmings. J. Atmos. Sci., 70, 688-707, doi:10.1175/JAS-D-12-0111.1.
    • Iwasaki, T., S. Yamada, and K. Tada, 1989: A parameterization scheme of orographic gravity wave drag with the different vertical partitioning, Part 1: Impact on medium range forecast. J. Meteor. Soc. Japan, 67, 11-41.
    • Japan Meteorological Agency, 2007: Outline of the operational numerical weather prediction at the Japan Meteorological Agency (Appendix to WMO numerical weather prediction progress report). Japan Meteorological Agency, 194 pp. [Available online at http://www.jma.go.jp/jma/jma-eng/ jma-center/nwp/outline-nwp/index.htm.]
    • Jung, T., and J. Barkmeijer, 2006: Sensitivity of the tropospheric circulation to changes in the strength of the stratospheric polar vortex. Mon. Wea. Rev., 134, 2191-2207, doi:10.1175/ MWR3178.1.
    • --, and M. Leutbecher, 2007: Performance of the ECMWF forecasting system in the Arctic during winter. Quart. J. Roy. Meteor. Soc., 133, 1327-1340, doi:10.1002/qj.99.
    • Kuroda, Y., 2010: High initial-time sensitivity of medium-range forecasting observed for a stratospheric sudden warming. Geophys. Res. Lett., 37, L16804, doi:10.1029/2010GL044119.
    • Leblanc, T., O. P. Tripathi, I. S. McDermid, L. Froidevaux, N. J. Livesey, W. G. Read, and J. W. Waters, 2006: Simultaneous lidar and EOS MLS measurements, and modelling, of a rare polar ozone filament event over Mauna Loa Observatory, Hawaii. Geophys. Res. Lett., 33, L16801, doi:10.1029/ 2006GL026257.
    • Leovy, C. B., C.-R. Sun, M. H. Hitchman, E. E. Remsberg, J. M. Russell, L. L. Gordley, J. C. Gille, and L. V. Lyjak, 1985: Transport of ozone in the middle stratosphere: Evidence for planetary wave breaking. J. Atmos. Sci., 42, 230-244, doi:10.1175/1520-0469(1985)042,0230:TOOITM.2.0.CO;2.
    • Limpasuvan, V., D. Thompson, and D. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 2584-2596, doi:10.1175/1520-0442(2004)017,2584: TLCOTN.2.0.CO;2.
    • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model. Mon. Wea. Rev., 128, 3187-3199, doi:10.1175/1520-0493(2000)128,3187: ANBLMS.2.0.CO;2.
    • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101-127, doi:10.1002/qj.49712353704.
    • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187-202, doi:10.1007/ BF00117978.
    • --, M. Tiedtke, and J. F. Geleyn, 1982: A short history of the operational PBL-parameterization at ECMWF. Proc. ECMWF Workshop on Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 59-79.
    • Manney, G. L., and Coauthors, 2008: The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses. J. Geophys. Res., 113, D11115, doi:10.1029/2007JD009097.
    • Marshall, A. G., and A. A. Scaife, 2010: Improved predictability of stratospheric sudden warming events in an atmospheric general circulation model with enhanced stratospheric resolution. J. Geophys. Res., 115, D16114, doi:10.1029/2009JD012643.
    • Matthewman, N. J., and J. G. Esler, 2011: Stratospheric sudden warmings as self-tuning resonances. Part I: Vortex splitting events. J. Atmos. Sci., 68, 2481-2504, doi:10.1175/ JAS-D-11-07.1.
    • --, --, A. J. Charlton-Perez, and L. M. Polvani, 2009: A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate, 22, 1566-1585, doi:10.1175/2008JCLI2365.1.
    • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593-600, doi:10.1038/ 305593a0.
    • --, and --, 1984: The ''surf zone'' in the stratosphere. J. Atmos. Terr. Phys., 46, 825-849, doi:10.1016/0021-9169(84)90063-1.
    • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2010: A local formulation of the ensemble transform (ET) analysis perturbation scheme. Wea. Forecasting, 25, 985-993, doi:10.1175/ 2010WAF2222359.1.
    • Mechoso, C. R., K. Yamazaki, A. Kitoh, and A. Arakawa, 1985: Numerical forecasts of stratospheric warming events during the winter of 1979. Mon. Wea. Rev., 113, 1015-1029, doi:10.1175/1520-0493(1985)113,1015:NFOSWE.2.0.CO;2.
    • --, M. J. Suarez, K. Yamazaki, A. Kitoh, and A. Arakawa, 1986: Numerical forecasts of tropospheric and stratospheric events during the winter of 1979: Sensitivity to the model's horizontal resolution and vertical extent. Advances in Geophysics, Vol. 29, Academic Press, 375-413.
    • Melander, M. V., N. J. Zabusky, and A. S. Styczek, 1986: A moment model for vortex interactions of the two dimensional Euler equations. Part I. Computational validation of a Hamiltonian elliptical representation. J. Fluid Mech., 167, 95-115, doi:10.1017/S0022112086002744.
    • Mitchell, D. M., A. J. Charlton-Perez, and L. J. Gray, 2011: Characterizing the variability and extremes of the stratospheric polar vortices using 2D moment analysis. J. Atmos. Sci., 68, 1194-1213, doi:10.1175/2010JAS3555.1.
    • --, L. J. Gray, J. Anstey, M. P. Baldwin, and A. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 2668-2682, doi:10.1175/JCLI-D-12-00030.1.
    • Mizuta, R., and Coauthors, 2012: Climate simulations using MRIAGCM3.2 with 20-km grid. J. Meteor. Soc. Japan, 90A, 233- 258, doi:10.2151/jmsj.2012-A12.
    • Molteni, F., and Coauthors, 2011: The new ECMWF seasonal forecast system (System 4). ECMWF Tech. Memo. 656, ECMWF, Reading, United Kingdom, 49 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2011/ 11209-new-ecmwf-seasonal-forecast-system-system-4.pdf.]
    • Mukougawa, H., and T. Hirooka, 2004: Predictability of stratospheric sudden warming: A case study for 1998/99 winter. Mon. Wea. Rev., 132, 1764-1776, doi:10.1175/1520-0493(2004)132,1764: POSSWA.2.0.CO;2.
    • --, H. Sakai, and T. Hirooka, 2005: High sensitivity to the initial condition for the prediction of stratospheric sudden warming. Geophys. Res. Lett., 32, L17806, doi:10.1029/2005GL022909.
    • Roff, G., D. W. J. Thompson, and H. Hendon, 2011: Does increasing model stratospheric resolution improve extendedrange forecast skill? Geophys. Res. Lett., 38, L05809, doi:10.1029/2010GL046515.
    • Rosmond, T., and L. Xu, 2006: Development of NAVDAS-AR: Non-linear formulation and outer loop tests. Tellus, 58A, 45- 58, doi:10.1111/j.1600-0870.2006.00148.x.
    • Scherhag, R., 1952: Die explosionsartigen Stratosphärenerwämungen des Spätwinters 1951. 52. Ber. Deutsch. Wetterdienst, 6, 51-61.
    • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667-682, doi:10.1175/1520-0469(2003)060,0667: AASNGW.2.0.CO;2.
    • Shaw, T. A., J. Perlwitz, and N. Harnik, 2010: Downward wave coupling between the stratosphere and troposphere: The importance of meridional wave guiding and comparison with zonal-mean coupling. J. Climate, 23, 6365-6381, doi:10.1175/ 2010JCLI3804.1.
    • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98-102, doi:10.1038/ngeo1698.
    • Simmons, A., M. Hortal, G. Kelly, A. McNally, A. Untch, and S. Uppala, 2003: Analyses and forecasts of stratospheric winter polar vortex break-up: September 2002 in the Southern Hemisphere and related events from ECMWF operations and ERA-40. ERA-40 Report Series, Rep. 5, ECMWF, 28 pp. [Available online at http://www.ecmwf.int/sites/default/files/ elibrary/2003/12239-analyses-and-forecasts-stratospheric-winterpolar-vortex-break-september-2002-southern.pdf.]
    • --, --, --, --, --, and --, 2005: ECMWF analyses and forecasts of stratospheric winter polar vortex breakup September 2002 in the Southern Hemisphere and related events. J. Atmos. Sci., 62, 668-689, doi:10.1175/JAS-3322.1.
    • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899-927, doi:10.1002/qj.49711347710.
    • Stan, C., and D. M. Straus, 2009: Stratospheric predictability and sudden stratospheric warming events. J. Geophys. Res., 114, D12103, doi:10.1029/2008JD011277.
    • Teixeira, J., 2001: Cloud fraction and relative humidity in a prognostic cloud fraction scheme. Mon. Wea. Rev., 129, 1750-1753, doi:10.1175/1520-0493(2001)129,1750:CFARHI.2.0.CO;2.
    • --, and T. F. Hogan, 2002: Boundary layer clouds in a global atmospheric model: Simple cloud cover parameterizations. J. Climate, 15, 1261-1276, doi:10.1175/1520-0442(2002)015,1261: BLCIAG.2.0.CO;2.
    • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 1421-1428, doi:10.1175/1520-0442(2002)015,1421:SCTNHW.2.0.CO;2.
    • Tiedtke, M., 1984: The sensitivity of the time-scale flow to cumulus convection in the ECMWF model. Proc. Workshop on LargeScale Numerical Models, Reading, United Kingdom, ECMWF, 297-316.
    • --, 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 3040-3061, doi:10.1175/1520-0493(1993)121,3040: ROCILS.2.0.CO;2.
    • Tripathi, O. P., T. Leblanc, I. S. McDermid, F. Lefèvre, M. Marchand, and A. Hauchecorne, 2006: Forecast, measurement, and modeling of an unprecedented polar ozone filament event over Mauna Loa Observatory, Hawaii. J. Geophys. Res., 111, D20308, doi:10.1029/2006JD007177.
    • --, and Coauthors, 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 987-1003, doi:10.1002/qj.2432.
    • Walters, D. N., and Coauthors, 2014: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geosci. Model Dev., 7, 361-386, doi:10.5194/gmd-7-361-2014.
    • Warner, C. D., and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 1837-1857, doi:10.1175/1520-0469(2001)058,1837: AUSPFN.2.0.CO;2.
    • Waugh, D. W., 1997: Elliptical diagnostics of stratospheric polar vortices. Quart. J. Roy. Meteor. Soc., 123, 1725-1748, doi:10.1002/qj.49712354213.
    • --, and W. J. Randel, 1999: Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci., 56, 1594-1613, COAAAP.2.0.CO;2.
    • Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 1989- 2010, doi:10.1256/qj.02.133.
    • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 1607-1636, doi:10.1002/qj.49712555707.
    • --, A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 2093-2107, doi:10.1002/qj.333.
    • Yabu, S., R. Mizuta, H. Yoshimura, Y. Kuroda, and H. Mukougawa, 2014: Meteorological Research Institute Ensemble Prediction System (MRI-EPS) for climate researchOutline and its applications. Tech. Rep. 71, Meteorological Research Institute.
    • Yoshimura, H., R. Mizuta, and H. Murakami, 2015: A spectral cumulus parameterization scheme interpolating between two convective updrafts with semi-Lagrangian calculation of transport by compensatory subsidence. Mon. Wea. Rev., 143, 597-621, doi:10.1175/MWR-D-14-00068.1.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article