Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Walker, R P; Leegood, R C (1996)
Languages: English
Types: Article
Subjects: Research Article

Classified by OpenAIRE into

mesheuropmc: food and beverages, fungi, digestive system, environment and public health, nutritional and metabolic diseases
We have previously shown that phosphoenolpyruvate carboxykinase (PEPCK) is phosphorylated in vivo in the cotyledons of darkened cucumber seedlings and that phosphorylation is reversed by light [Walker and Leegood (1995) FEBS Lett. 362, 70–74]. In this study the molecular mass of PEPCK was estimated in a range of gluconeogenic seedlings and in leaves of C4 plants and plants with Crassulacean acid metabolism (CAM). Phosphorylation of PEPCK was studied in these plants by feeding tissues with [32P]Pi and assessing phosphorylation by SDS/PAGE and autoradiography of either total proteins or of immunoprecipitated protein. In gluconeogenic seedlings and most CAM plants PEPCK had a molecular mass of 74 kDa, whereas in C4 grasses the molecular mass of PEPCK was always smaller and varied from 67–71 kDa. In all gluconeogenic seedlings and leaves of CAM plants PEPCK was phosphorylated, but it was not phosphorylated in all species of C4 grasses studied. In CAM plants, phosphorylation of PEPCK occurred at night and dephosphorylation occurred during the day. In C4 grasses phosphorylation occurred when leaves were darkened and the enzyme was dephosphorylated following illumination, but it was only phosphorylated in those plants with larger (71 kDa) molecular mass forms of PEPCK.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Dittrich, P., Campbell, W. H. and Black, Jr., C. C. (1973) Plant Physiol. 52, 357-361
    • 2 Leegood, R. C. and Osmond, C. B. (1990) in Plant Physiology, Biochemistry and Molecular Biology (Dennis, D. T. and Turpin, D. H., eds.), pp. 274-298, Longman, London
    • 3 Carnal, N. W., Agostino, A. and Hatch, M. D. (1993) Arch. Biochem. Biophys. 306, 360-367
    • 4 Burnell, J. N. (1986) Aust. J. Plant Physiol. 13, 577-587
    • 5 Walker, R. P., Trevanion, S. J. and Leegood, R. C. (1995) Planta 195, 58-63
    • 6 Finnegan, P. M. and Burnell, J. N. (1995) Plant Mol. Biol. 27, 365-376
    • 7 Arnelle, D. R. and O 'Leary, M. H. (1992) Biochemistry 31, 4363-4368
    • 8 Daley, L. S., Ray, T. B., Vines, H. M. and Black, Jr., C. C. (1977) Plant Physiol. 59, 618-622
    • 9 Lin, Z. F., Lin, G. Z. and Sun, G. C. (1992) Chinese J. Bot. 4, 117-123
    • 10 Leegood, R. C. and ap Rees, T. (1978) Biochim. Biophys. Acta 542, 1-11
    • 11 Trevanion, S. J., Brooks, A. L. and Leegood, R. C. (1995) Planta 196, 653-658
    • 12 Walker, R. P. and Leegood, R. C. (1995) FEBS Lett. 362, 70-74
    • 13 Lin, Z. F., Lin, G. Z. and Sun, G. C. (1991) Acta Bot. Sin. 33, 273-279
    • 14 Lin, Z. F., Peng, C.-L., Lin, G. Z. and Li, S.-S. (1994) Acta Phytophys. Sin. 20, 353-359
    • 15 Ku, M. S. B., Spalding, M. H. and Edwards, G. E. (1980) Plant Sci. Lett. 19, 1-8
    • 16 Huber, S. C., Huber, J. L. and McMichael, R. W. (1994) Int. Rev. Cyt. 149, 47-98
    • 17 Plaxton, W. C. and Preiss, J. (1987) Plant Physiol. 83, 105-112
    • 18 Kleczkowski, L., Villand, P., Luthi, E. and Preiss, J. (1993) Plant Physiol. 101, 179-186
    • 19 Kampfenkel, K. (1992) Biochim. Biophys. Acta 1156, 71-77
    • 20 Baur, B., Dietz, K.-J. and Winter, K. (1992) Eur. J. Biochem. 209, 95-101
    • 21 Laemmli, U. K. (1970) Nature (London) 227, 680-685
    • 22 Comai, L., Dietrich, R. A., Maslyar, D. J., Baden, C. S. and Harada, J. J. (1989) Plant Cell 1, 293-300
    • 23 Kim, D.-J. and Smith, S. M. (1994) Plant Mol. Biol. 26, 423-434
    • 24 Carter, P. J., Nimmo, H. G., Fewson, C. A. and Wilkins, M. B. (1991) EMBO J. 10, 2063-2068
    • 25 Ehleringer, J. R. and Monson, R. K. (1993) Annu. Rev. Ecol. Syst. 24, 411-439
    • 26 Rittenhouse, J., Chatterjee, T., Marcus, F., Reardon, I. and Heinrikson, R. L. (1983) J. Biol. Chem. 258, 7648-7652
    • 27 Meek, D. W. and Nimmo, H. G. (1984) Biochem. J. 222, 125-130
    • 28 Pilkis, S. J., Claus, T. H., Kurland, I. J. and Lange, A. J. (1995) Annu. Rev. Biochem. 64, 799-835
    • 29 Lepiniec, L., Keryer, E., Philippe, H., Gadal, P. and Cretin, C. (1993) Plant Mol. Biol. 21, 487-502
    • 30 Nimmo, G. A., Nimmo, H. G., Hamilton, I. D., Fewson, C. A. and Wilkins, M. B. (1986) Biochem. J. 239, 213-220
    • 31 Quiquampoix, H., Loughman, B. and Ratcliffe, R. G. (1993) J. Exp. Bot. 44, 1819-1827
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article