LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Akbar, M.; Curiel-Sosa, J.L. (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
In this paper, an investigation on the energy harvesting exerted by the dynamic bending responses of a piezoelectric embedded wingbox is presented. An innovative hybrid mathematical/computational scheme is built to evaluate the energy harvested by a mechanical system. The governing voltage differential equations of the piezoelectric composite beam are coupled with the finite element method output. The scheme is able of evaluating various excitation forms including dynamic force and base excitation. Thus, it provides the capability to analyse a complicated structure with a more realistic loading scenario. Application to the simulation of a notional jet aircraft wingbox with a piezoelectric skin layer is shown in some detail. The results pointed out that the electrical power generated can be as much as 25.24 kW for a 14.5 m wingspan. The capabilities and robustness of the scheme are shown by comparison with results from the literature.\ud \ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Christodoulou L, Venables JD. Multifunctional material systems: The first generation. JOM 2003;55(12):39-45.
    • [2] Gibson RF. A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 2010;92(12):2793 -810.
    • [3] Thomas JP, Qidwai MA, Kellogg JC. Energy scavenging for small-scale unmanned systems. J Power Sources 2006;159(2):1494 -509.
    • [4] Anton SR, Sodano HA. A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater Struct 2007;16(3):R1.
    • [5] Selvan KV, Mohamed Ali MS. Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renew Sustain Energy Rev 2016;54:1035 -47.
    • [6] Thomas JP, Keennon M, DuPasquier A, Qidwai MA, Matic P. Multifunctional structure-battery materials for enhanced performance in small unmanned air vehicles. Proc ASME IMECE 2003;98:289-92.
    • [7] Thomas JP, Qidwai MA. The design and application of multifunctional structure-battery materials systems. JOM 2005;57(3):18-24.
    • [8] Anton SR, Inman DJ. Vibration energy harvesting for unmanned aerial vehicles. Proc SPIE Act Passiv Smart Struct Integr Syst 2008;6928:692824.
    • [9] Erturk A, Anton SR, Inman DJ. Piezoelectric energy harvesting from multifunctional wing spars for UAVs - Part 1: Coupled modeling and preliminary analysis. Proc SPIE Act Passiv Smart Struct Integr Syst 2009;7288:72880C.
    • [10] Anton SR, Erturk A, Inman DJ. Piezoelectric energy harvesting from multifunctional wing spars for UAVs - Part 2: Experiments and storage applications. Proc SPIE Act Passiv Smart Struct Integr Syst 2009;7288:72880D.
    • [11] Erturk A, Inman DJ. Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater Struct 2008;17(6):065016.
    • [12] Erturk A, Inman DJ. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 2008;130(4):041002.
    • [13] Erturk A, Inman DJ. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 2009;18(2):025009.
    • [14] Erturk A, Vieira WGR, De Marqui Jr. C, Inman DJ. On the energy harvesting potential of piezoaeroelastic systems. Appl Phys Lett 2010;96(18):184103.
    • [15] De Marqui Jr. C, Erturk A, Inman DJ. Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes. J Intell Mater Syst Struct 2010;21(10):983-93.
    • [16] De Marqui Jr. C, Vieira WGR, Erturk A, Inman DJ. Modeling and analysis of piezoelectric energy harvesting from aeroelastic vibrations using the doublet-lattice method. J Vib Acoust 2011;133(1):011003.
    • [17] De Marqui Jr. C, Erturk A. Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction. J Intell Mater Syst Struct 2013;24(7):846-54.
    • [18] Dias JAC, De Marqui Jr. C, Erturk A. Three-degreeof-freedom hybrid piezoelectric-inductive aeroelastic energy harvester exploiting a control surface. AIAA J 2015;53(2):394-404.
    • [19] Amini Y, Emdad H, Farid M. Finite element modeling of functionally graded piezoelectric harvesters. Compos Struct 2015;129:165-76.
    • [20] Amini Y, Fatehi P, Heshmati M, Parandvar H. Time domain and frequency domain analysis of functionally graded piezoelectric harvesters subjected to random vibration: Finite element modeling. Compos Struct 2016;136:384-93.
    • [21] Abdelkefi A. Aeroelastic energy harvesting: A review. Int J Eng Sci 2016;100:112-35.
    • [22] Xiang J, Wu Y, Li D. Energy harvesting from the discrete gust response of a piezoaeroelastic wing: Modeling and performance evaluation. J Sound Vib 2015;343:176-93.
    • [23] Lenk A, Ballas RG, Werthschu¨tzky R, Pfeifer G. Electromechanical Systems in Microtechnology and Mechatronics: Electrical, Mechanical and Acoustic Networks, their Interactions and Applications; chap. 9. Microtechnology and MEMS; Springer Berlin Heidelberg. ISBN 9783642108068; 2010, p. 313-412.
    • [24] Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society . IEEE Standard on Piezoelectricity. ANSI/IEEE Std 176-1987 1988;.
    • [25] Ballas RG. Piezoelectric Multilayer Beam Bending Actuators: Static and Dynamic Behavior and Aspects of Sensor Integration; chap. 6. Microtechnology and MEMS; Springer Berlin Heidelberg. ISBN 9783540326427; 2007, p. 103-22.
    • [26] Ballas RG. Piezoelectric Multilayer Beam Bending Actuators: Static and Dynamic Behavior and Aspects of Sensor Integration; chap. 4. Microtechnology and MEMS; Springer Berlin Heidelberg; 2007, p. 48-76.
    • [27] Ballas RG. Piezoelectric Multilayer Beam Bending Actuators: Static and Dynamic Behavior and Aspects of Sensor Integration; chap. 9. Microtechnology and MEMS; Springer Berlin Heidelberg. ISBN 9783540326427; 2007, p. 173-96.
    • [28] Erturk A, Inman DJ. Piezoelectric Energy Harvesting; chap. 5. John Wiley & Sons; 2011, p. 131-50.
    • [29] Lu F, Lee H, Lim S. Modeling and analysis of micro piezoelectric power generators for micro-electromechanicalsystems applications. Smart Mater Struct 2004;13(1):57- 63.
    • [30] Beeby S, Tudor M, White N. Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 2006;17(12):R175-95.
    • [31] Erturk A, Inman DJ. Piezoelectric Energy Harvesting; chap. 3. John Wiley & Sons; 2011, p. 49-96.
    • [32] Erturk A, Inman DJ. Piezoelectric Energy Harvesting; chap. 4. John Wiley & Sons; 2011, p. 97-130.
    • [33] Ainsworth J, Collier C, Yarrington P, Lucking R, Locke J. Airframe wingbox preliminary design and weight prediction. In: 69th Annual Conference on Mass Properties, Virginia Beach, Virginia. 2010, p. 41.
    • [34] Curiel Sosa JL, Gil A. Analysis of a continuum-based beam element in the framework of explicit-FEM. Finite Elem Anal Des 2009;45(89):583 -91.
    • [35] Curiel Sosa JL, Beg OA, Liebana Murillo JM. Finite element analysis of structural instability using an implicit/explicit switching technique. Int J Comput Methods Eng Sci Mech 2013;14(5):452-64.
    • [36] MSC Software Corporation . MSC Nastran 2014 Dynamic Analysis User's Guide; chap. 4. Springer Berlin Heidelberg; 2014, p. 133-65.
    • [37] Ueda H, Carr S. Piezoelectricity in polyacrylonitrile. Polymer 1984;16(9):661-7.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article