LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Guo, L.Z.; Billings, S.A.; Wei, H.L. (2005)
Publisher: Automatic Control and Systems Engineering, University of Sheffield
Languages: English
Types: Book
Subjects:
A new approach for the estimation of spatial derivatives and the identification of a class of continuous spatio-temporal dynamical systems from experimental data is presented in this study. The proposed identification approach is a combination of implicit Adams integration and an orthogonal forward regression algorithm (OFR), in which the operators are expanded using polynomials as basis functions. The noisy experimental data are de-noised by using biorthogonal spline wavelet filters and the spatial derivatives are estimated using a multiresolution analysis method. Finally a bootstrap method is applied to refine the identified parameters from the OFR algorithm. The resulting identified models of the spatio-temporal evolution form a system of partial differential equations. Examples are provided to demonstrate the efficiency of the proposed method.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article