LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aad, G.; Besjes, G.J.; Caron, S.; Chelstowska, M.A.; Groot, N. de; Filthaut, F.; Klok, P.F.; König, A.C; Koetsveld, F.; Raas, M.; Salvucci, A. (2013)
Publisher: Elsevier
Types: Unknown,Article
Subjects: Supersymmetry, Supersymmetry; Gauge mediation; Higgs boson; Atlas detector, Particle Physics - Experiment, Gauge Mediation, displaced muonic lepton jets; Higgs boson; proton–proton collisions; ATLAS detector, Naturvetenskap, 530, QC, Science & Technology, High Energy Physics - Experiment, Natural Sciences, Física nuclear, 530 Physics, Higgs Boson, Nuclear and High Energy Physics
ddc: ddc:530

Classified by OpenAIRE into

arxiv: High Energy Physics::Phenomenology, High Energy Physics::Experiment
A search has been performed for the experimental signature of an isolated photon with high transverse momentum, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such a final state may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. The search is performed using the full dataset of 7 TeV proton-proton collisions recorded with the ATLAS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb-1. A total of 7 candidate events are observed while 7.5 pm 2.2 events are expected from the Standard Model background. The results of the search are interpreted in the context of general gauge mediation to exclude certain regions of a benchmark plane for higgsino-like neutralino production. A search has been performed for the experimental signature of an isolated photon with high transverse momentum, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such a final state may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. The search is performed using the full dataset of 7 TeV proton-proton collisions recorded with the ATLAS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb^-^1. A total of 7 candidate events are observed while 7.5+/-2.2 events are expected from the Standard Model background. The results of the search are interpreted in the context of general gauge mediation to exclude certain regions of a benchmark plane for higgsino-like neutralino production. A search has been performed for the experimental signature of an isolated photon with high transverse momentum, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such a final state may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. The search is performed using the full dataset of 7 TeV proton-proton collisions recorded with the ATLAS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb-1. A total of 7 candidate events are observed while 7.5 pm 2.2 events are expected from the Standard Model background. The results of the search are interpreted in the context of general gauge mediation to exclude certain regions of a benchmark plane for higgsino-like neutralino production. A search has been performed for the experimental signature of an isolated photon with high transverse momentum, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such a final state may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. The search is performed using the full dataset of 7 TeV proton–proton collisions recorded with the ATLAS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb−1 . A total of 7 candidate events are observed while 7.5±2.2 events are expected from the Standard Model background. The results of the search are interpreted in the context of general gauge mediation to exclude certain regions of a benchmark plane for higgsino-like neutralino production.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. Dine, W. Fischler, Phys. Lett. B 110 (1982) 227, http://dx.doi.org/10.1016/ 0370-2693(82)91241-2.
    • [2] L. Alvarez-Gaume, M. Claudson, M.B. Wise, Nucl. Phys. B 207 (1982) 96, http:// dx.doi.org/10.1016/0550-3213(82)90138-9.
    • [3] C.R. Nappi, B.A. Ovrut, Phys. Lett. B 113 (1982) 175, http://dx.doi.org/10.1016/ 0370-2693(82)90418-X.
    • [4] M. Dine, A.E. Nelson, Phys. Rev. D 48 (1993) 1277, http://dx.doi.org/10.1103/ PhysRevD.48.1277, arXiv:hep-ph/9303230.
    • [5] M. Dine, A.E. Nelson, Y. Shirman, Phys. Rev. D 51 (1995) 1362, http://dx.doi.org/ 10.1103/PhysRevD.51.1362, arXiv:hep-ph/9408384.
    • [6] M. Dine, A.E. Nelson, Y. Nir, Y. Shirman, Phys. Rev. D 53 (1996) 2658, http:// dx.doi.org/10.1103/PhysRevD.53.2658, arXiv:hep-ph/9507378.
    • [7] J.L. Feng, Ann. Rev. Astron. Astrophys. 48 (2010) 495, http://dx.doi.org/10.1146/ annurev-astro-082708-101659, arXiv:1003.0904.
    • [8] V.M. Abazov, et al., D0 Collaboration, Phys. Rev. Lett. 105 (2010) 221802, http://dx.doi.org/10.1103/PhysRevLett.105.221802, arXiv:1008.2133.
    • [9] ATLAS Collaboration, Phys. Lett. B 718 (2) (2012) 411, arXiv:1209.0753.
    • [10] P. Meade, N. Seiberg, D. Shih, Prog. Theor. Phys. Suppl. 177 (2009) 143, http:// dx.doi.org/10.1143/PTPS.177.143, arXiv:0801.3278.
    • [11] J.T. Ruderman, D. Shih, JHEP 1208 (2012) 159, http://dx.doi.org/10.1007/ JHEP08(2012)159, arXiv:1103.6083.
    • [12] ATLAS Collaboration, Phys. Lett. B 710 (2012) 519, http://dx.doi.org/10.1016/ j.physletb.2012.02.054, arXiv:1111.4116.
    • [13] CMS Collaboration, Phys. Rev. Lett. 106 (2011) 211802, http://dx.doi.org/ 10.1103/PhysRevLett.106.211802, arXiv:1103.0953.
    • [14] ATLAS Collaboration, Phys. Rev. D 85 (2012) 112006, http://dx.doi.org/10.1103/ PhysRevD.85.112006, arXiv:1203.6193.
    • [15] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 2174, http://dx.doi.org/10.1140/ epjc/s10052-012-2174-z.
    • [16] ATLAS Collaboration, Phys. Rev. D 86 (2012) 092002, http://dx.doi.org/10.1103/ PhysRevD.86.092002.
    • [17] V.M. Abazov, et al., D0 Collaboration, Phys. Rev. D 86 (2012) 071701, http:// dx.doi.org/10.1103/PhysRevD.86.071701, arXiv:1203.5311.
    • [18] ATLAS Collaboration, JINST 3 (2008) S08003, http://dx.doi.org/10.1088/1748- 0221/3/08/S08003.
    • [19] S. Frixione, B.R. Webber, JHEP 0206 (2002) 029, arXiv:hep-ph/0204244.
    • [20] H.-L. Lai, et al., Phys. Rev. D 82 (2010) 074024, http://dx.doi.org/10.1103/ PhysRevD.82.074024, arXiv:1007.2241.
    • [21] G. Corcella, et al., JHEP 0101 (2001) 010, arXiv:hep-ph/0011363.
    • [22] J. Butterworth, J.R. Forshaw, M. Seymour, Z. Phys. C 72 (1996) 637, http:// dx.doi.org/10.1007/s002880050286, arXiv:hep-ph/9601371.
    • [23] P. Nason, JHEP 0411 (2004) 040, http://dx.doi.org/10.1088/1126-6708/2004/11/ 040, arXiv:hep-ph/0409146.
    • [24] S. Frixione, P. Nason, C. Oleari, JHEP 0711 (2007) 070, http://dx.doi.org/10.1088/ 1126-6708/2007/11/070, arXiv:0709.2092.
    • [25] S. Alioli, P. Nason, C. Oleari, E. Re, JHEP 1006 (2010) 043, http://dx.doi.org/ 10.1007/JHEP06(2010)043, arXiv:1002.2581.
    • [26] W. Kilian, T. Ohl, J. Reuter, Eur. Phys. J. C 71 (2011) 1742, http://dx.doi.org/ 10.1140/epjc/s10052-011-1742-y, arXiv:0708.4233.
    • [27] J. Pumplin, et al., JHEP 0207 (2002) 012, arXiv:hep-ph/0201195.
    • [28] E. Barberio, B. van Eijk, Z. Was, Comput. Phys. Commun. 66 (1991) 115, http:// dx.doi.org/10.1016/0010-4655(91)90012-A.
    • [29] T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 0605 (2006) 026, http://dx.doi.org/ 10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.
    • [30] M.L. Mangano, et al., JHEP 0307 (2003) 001, arXiv:hep-ph/0206293.
    • [31] A. Djouadi, M. Muhlleitner, M. Spira, Acta Phys. Polon. B 38 (2007) 635, arXiv: hep-ph/0609292.
    • [32] M. Bahr, et al., Eur. Phys. J. C 58 (2008) 639, http://dx.doi.org/10.1140/epjc/ s10052-008-0798-9, arXiv:0803.0883.
    • [33] W. Beenakker, R. Hopker, M. Spira, P. Zerwas, Nucl. Phys. B 492 (1997) 51, http://dx.doi.org/10.1016/S0550-3213(97)00084-9, arXiv:hep-ph/9610490.
    • [34] A. Kulesza, L. Motyka, Phys. Rev. Lett. 102 (2009) 111802, http://dx.doi.org/ 10.1103/PhysRevLett.102.111802, arXiv:0807.2405.
    • [35] A. Kulesza, L. Motyka, Phys. Rev. D 80 (2009) 095004, http://dx.doi.org/10.1103/ PhysRevD.80.095004, arXiv:0905.4749.
    • [36] W. Beenakker, et al., JHEP 0912 (2009) 041, http://dx.doi.org/10.1088/1126- 6708/2009/12/041, arXiv:0909.4418.
    • [37] W. Beenakker, et al., Int. J. Mod. Phys. A 26 (2011) 2637, http://dx.doi.org/ 10.1142/S0217751X11053560, arXiv:1105.1110.
    • [38] M. Kramer, et al., Supersymmetry production cross sections in pp collisions at √s = 7 TeV, Technical Report CERN-PH-TH-2012-163, 2012, https:// cds.cern.ch/record/1456029, arXiv:1206.2892.
    • [39] P.M. Nadolsky, et al., Phys. Rev. D 78 (2008) 013004, arXiv:0802.0007.
    • [40] A. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63 (2009) 189, arXiv: 0901.0002.
    • [41] S. Agostinelli, et al., GEANT4 Collaboration, Nucl. Instrum. Meth. A 506 (2003) 250, http://dx.doi.org/10.1016/S0168-9002(03)01368-8.
    • [42] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823, http://dx.doi.org/10.1140/ epjc/s10052-010-1429-9, arXiv:1005.4568.
    • [43] M. Cacciari, G.P. Salam, G. Soyez, JHEP 0804 (2008) 063, http://dx.doi.org/ 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
    • [44] ATLAS Collaboration, Eur. Phys. J. C, in press, arXiv:1112.6426.
    • [45] ATLAS Collaboration, Measurement of the b-tag efficiency in a sample of jets containing muons with 5 fb−1 of data from the ATLAS detector, Technical Report ATLAS-CONF-2012-043, 2012, http://cdsweb.cern.ch/record/1435197.
    • [46] ATLAS Collaboration, Phys. Rev. D 83 (2011) 052005, http://dx.doi.org/10.1103/ PhysRevD.83.052005, arXiv:1012.4389.
    • [47] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1909, http://dx.doi.org/10.1140/ epjc/s10052-012-1909-1, arXiv:1110.3174.
    • [48] ATLAS Collaboration, Phys. Lett. B 709 (2012) 137, http://dx.doi.org/10.1016/ j.physletb.2012.01.076, arXiv:1110.6189.
    • [49] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1844, http://dx.doi.org/10.1140/ epjc/s10052-011-1844-6, arXiv:1108.5602.
    • [50] B.P. Kersevan, E. Richter-Was, The Monte Carlo event generator AcerMC version 2.0 with interfaces to PYTHIA 6.2 and HERWIG 6.5, Technical Report TPJU6-2004, TPJU, Cracow, 2004.
    • [51] ATLAS Collaboration, Eur. Phys. J. C, in press, arXiv:1112.6426.
    • [52] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630, http://dx.doi.org/10.1140/ epjc/s10052-011-1630-5, arXiv:1101.2185.
    • [53] ATLAS Collaboration, Luminosity determination in pp collisions at √s = 7 TeV using the ATLAS detector in 2011, Technical Report ATLAS-CONF-2011-116, 2011, http://cdsweb.cern.ch/record/1376384.
    • [54] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71 (2011) 1554, http:// dx.doi.org/10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727.
    • 166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
    • 167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
    • 168 Department of Physics, University of British Columbia, Vancouver, BC, Canada
    • 169 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
    • 170 Department of Physics, University of Warwick, Coventry, United Kingdom
    • 171 Waseda University, Tokyo, Japan
    • 172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
    • 173 Department of Physics, University of Wisconsin, Madison, WI, United States
    • 174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
    • 175 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
    • 176 Department of Physics, Yale University, New Haven, CT, United States
    • 177 Yerevan Physics Institute, Yerevan, Armenia
    • 178 Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • EC | EGI-INSPIRE
  • EC | EPLANET
  • SNSF | High-Energy Hadron Interac...

Related to

  • egiEGI Projects: EGI-InSPIRE
  • egiEGI virtual organizations: atlas
  • egiEGI virtual organizations: cms

Cite this article