LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lenzo, Basilio; Sorniotti, A; De Filippis, G; Gruber, P; Sannen, K
Languages: English
Types: Unknown
Subjects:
Electric vehicles with multiple motors allow torque-vectoring, which generates a yaw moment by assigning different motor torques at the left and right wheels. This permits designing the steady-state cornering response according to several vehicle handling quality targets. For example, as widely discussed in the literature, to make the vehicle more sports-oriented, it is possible to reduce the understeer gradient and increase the maximum lateral acceleration with respect to the same vehicle without torque-vectoring. This paper focuses on the novel experimentally-based design of a reference vehicle understeer characteristic providing energy efficiency enhancement over the whole range of achievable lateral accelerations. Experiments show that an appropriate tuning of the reference understeer characteristic, i.e., the reference yaw rate of the torque-vectoring controller, can bring energy savings of up to ~11% for a case study four-wheel-drive electric vehicle demonstrator. Moreover, during constant speed cornering, it is more efficient to significantly reduce the level of vehicle understeer, with respect to the same vehicle with even torque distribution on the left and right wheels.

Share - Bookmark

Funded by projects

  • EC | ICOMPOSE

Cite this article