Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ke, X.; Bernal, S.A.; Provis, J.L. (2016)
Publisher: Elsevier
Journal: Cement and Concrete Research
Languages: English
Types: Article
Subjects: Materials Science(all), Building and Construction
In this study, Na2CO3-activated slag cements were produced from four different blast furnace slags, each blended with a calcined layered double hydroxide (CLDH) derived from thermally treated hydrotalcite. The aim was to expedite the reaction kinetics of these cements, which would otherwise react and harden very slowly. The inclusion of CLDH in these Na2CO3-activated cements accelerates the reaction, and promotes hardening within 24 h. The MgO content of the slag also defines the reaction kinetics, associated with the formation of hydrotalcite-type LDH as a reaction product. The effectiveness of the CLDH is associated with removal of dissolved CO3 2 - from the fresh cement, yielding a significant rise in the pH, and also potential seeding effects. The key factor controlling the reaction kinetics of Na2CO3-activated slag cements is the activator functional group, and therefore these cements can be designed to react more rapidly by controlling the slag chemistry and/or including reactive additives.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] J.S.J. van Deventer, J.L. Provis, P. Duxson, D.G. Brice, Chemical research and climate change as drivers in the commercial adoption of alkali activated materials, Waste Biomass Valoriz. 1 (2010) 145-155.
    • [2] J.L. Provis, D.G. Brice, A. Buchwald, P. Duxson, E. Kavalerova, P.V. Krivenko, C. Shi, J.S.J. van Deventer, J.A.L.M. Wiercx, Demonstration projects and applications in building and civil infrastructure, in: J.L. Provis, J.S.J. van Deventer (Eds.), Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, RILEM/Springer, Dordrecht 2014, pp. 309-338.
    • [3] J.L. Provis, Geopolymers and other alkali activated materials: why, how, and what? Mater. Struct. 47 (2014) 11-25.
    • [4] F. Winnefeld, M. Ben Haha, G. Le Saout, M. Costoya, S.-C. Ko, B. Lothenbach, Influence of slag composition on the hydration of alkali-activated slags, J. Sustain. Cem. Based Mater. 4 (2015) 85-100.
    • [5] S.-D. Wang, K.L. Scrivener, P.L. Pratt, Factors affecting the strength of alkali-activated slag, Cem. Concr. Res. 24 (1994) 1033-1043.
    • [6] S. Song, D. Sohn, H.M. Jennings, T.O. Mason, Hydration of alkali-activated ground granulated blast furnace slag, J. Mater. Sci. 35 (2000) 249-257.
    • [7] S.A. Bernal, J.L. Provis, A. Fernández-Jiménez, P.V. Krivenko, E. Kavalerova, M. Palacios, C. Shi, Binder chemistry - High-calcium alkali-activated materials, in: J.L. Provis, J.S.J. van Deventer (Eds.), Alkali-Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer/RILEM, Dordrecht 2014, pp. 59-91.
    • [8] J.L. Provis, S.A. Bernal, Geopolymers and related alkali-activated materials, Annu. Rev. Mater. Res. 44 (2014) 299-327.
    • [9] J.L. Provis, Green concrete or red herring? - future of alkali-activated materials, Adv. Appl. Ceram. 113 (2014) 472-477.
    • [10] S.A. Bernal, J.L. Provis, R.J. Myers, R. San Nicolas, J.S.J. van Deventer, Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders, Mater. Struct. 48 (2014) 517-529.
    • [11] S.A. Bernal, R. San Nicolas, J.S.J. van Deventer, J.L. Provis, Alkali-activated slag cements produced with a blended sodium carbonate/silicate activator, Adv. Cem. Res. (2016)http://dx.doi.org/10.1680/adcr.15.00013 (in press).
    • [12] A. Fernández-Jiménez, F. Puertas, Setting of alkali-activated slag cement. Influence of activator nature, Adv. Cem. Res. 13 (2001) 115-121.
    • [13] C. Shi, R.L. Day, Some factors affecting early hydration of alkali-slag cements, Cem. Concr. Res. 26 (1996) 439-447.
    • [14] A. Fernández-Jiménez, F. Puertas, Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements, Adv. Cem. Res. 15 (2003) 129-136.
    • [15] M. Ben Haha, B. Lothenbach, G. Le Saout, F. Winnefeld, Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - part II: effect of Al2O3, Cem. Concr. Res. 42 (2012) 74-83.
    • [16] M. Ben Haha, B. Lothenbach, G. Le Saout, F. Winnefeld, Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - part I: effect of MgO, Cem. Concr. Res. 41 (2011) 955-963.
    • [17] S.A. Bernal, R. San Nicolas, R.J. Myers, R. Mejía de Gutiérrez, F. Puertas, J.S.J. van Deventer, J.L. Provis, MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders, Cem. Concr. Res. 57 (2014) 33-43.
    • [18] A.R. Sakulich, E. Anderson, C.L. Schauer, M.W. Barsoum, Influence of Si:Al ratio on the microstructural and mechanical properties of a fine-limestone aggregate alkali-activated slag concrete, Mater. Struct. 43 (2010) 1025-1035.
    • [19] A.R. Sakulich, E. Anderson, C. Schauer, M.W. Barsoum, Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete, Constr. Build. Mater. 23 (2009) 2951-2957.
    • [20] C. Shi, R.L. Day, A calorimetric study of early hydration of alkali-slag cements, Cem. Concr. Res. 25 (1995) 1333-1346.
    • [21] S. Miyata, The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties I: the systems Mg2+-Al3+-NO3−, Mg2+-Al3+-Cl−, Mg2+-Al3+-ClO4−, Ni2+-Al3+-Cl− and Zn2+-Al3+-Cl−, Clay Clay Miner. 23 (1975) 369-375.
    • [22] S.J. Mills, A.G. Christy, J.-M.R. Genin, T. Kameda, F. Colombo, Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides, Mineral. Mag. 76 (2012) 1289-1336.
    • [23] M.C.D. Mourad, M. Mokhtar, M.G. Tucker, E.R. Barney, R.I. Smith, A.O. Alyoubi, S.N. Basahel, M.S.P. Shaffer, N.T. Skipper, Activation and local structural stability during the thermal decomposition of Mg/Al-hydrotalcite by total neutron scattering, J. Mater. Chem. 21 (2011) 15479-15485.
    • [24] T. Hibino, Y. Yamashita, K. Kosuge, A. Tsunashima, Decarbonation behavior of MgAl-CO3 hydrotalcite-like compounds during heat treatment, Clay Clay Miner. 43 (1995) 427-432.
    • [25] L. Lv, J. He, M. Wei, D.G. Evans, X. Duan, Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: equilibrium and kinetic studies, Water Res. 40 (2006) 735-743.
    • [26] L. Lv, J. He, M. Wei, X. Duan, Kinetic studies on fluoride removal by calcined layered double hydroxides, Ind. Eng. Chem. Res. 45 (2006) 8623-8628.
    • [27] M. León, E. Díaz, S. Ordóñez, Ethanol catalytic condensation over Mg-Al mixed oxides derived from hydrotalcites, Catal. Today 164 (2011) 436-442.
    • [28] D. Tichit, M. Naciri Bennani, F. Figueras, R. Tessier, J. Kervennal, Aldol condensation of acetone over layered double hydroxides of the meixnerite type, Appl. Clay Sci. 13 (1998) 401-415.
    • [29] Z. Yang, H. Fischer, R. Polder, Synthesis and characterization of modified hydrotalcites and their ion exchange characteristics in chloride-rich simulated concrete pore solution, Cem. Concr. Compos. 47 (2014) 87-93.
    • [30] S. Yoon, J. Moon, S. Bae, X. Duan, E.P. Giannelis, P.M. Monteiro, Chloride adsorption by calcined layered double hydroxides in hardened portland cement paste, Mater. Chem. Phys. 145 (2014) 376-386.
    • [31] E. Kanezaki, Thermal behavior of the hydrotalcite-like layered structure of Mg and Al-layered double hydroxides with interlayer carbonate by means of in situ powder HTXRD and DTA/TG, Solid State Ionics 106 (1998) 279-284.
    • [32] T. Matschei, B. Lothenbach, F.P. Glasser, The AFm phase in Portland cement, Cem. Concr. Res. 37 (2007) 118-130.
    • [33] M. Whittaker, M. Zajac, M. Ben Haha, F. Bullerjahn, L. Black, The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends, Cem. Concr. Res. 66 (2014) 91-101.
    • [34] G. Mascolo, M.C. Mascolo, On the synthesis of layered double hydroxides (LDHs) by reconstruction method based on the “memory effect”, Microporous Mesoporous Mater. 214 (2015) 246-248.
    • [35] K. Morimoto, S. Anraku, J. Hoshino, T. Yoneda, T. Sato, Surface complexation reactions of inorganic anions on hydrotalcite-like compounds, J. Colloid Interface Sci. 384 (2012) 99-104.
    • [36] J. Rocha, M. del Arco, V. Rives, M.A. Ulibarri, Reconstruction of layered double hydroxides from calcined precursors: a powder XRD and 27Al MAS NMR study, J. Mater. Chem. 9 (1999) 2499-2503.
    • [37] A. Ipavec, R. Gabrovšek, T. Vuk, V. Kaučič, J. Maček, A. Meden, Carboaluminate phases formation during the hydration of calcite-containing portland cement, J. Am. Ceram. Soc. 94 (2011) 1238-1242.
    • [38] D. Damidot, S. Stronach, A. Kindness, M. Atkins, F.P. Glasser, Thermodynamic investigation of the CaO-Al2O3-CaCO3-H2O closed system at 25 °C and the influence of Na2O, Cem. Concr. Res. 24 (1994) 563-572.
    • [39] T. Matschei, B. Lothenbach, F.P. Glasser, Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O, Cem. Concr. Res. 37 (2007) 1379-1410.
    • [40] S.-D. Wang, K.L. Scrivener, Hydration products of alkali activated slag cement, Cem. Concr. Res. 25 (1995) 561-571.
    • [41] J.I. Escalante-García, A.F. Fuentes, A. Gorokhovsky, P.E. Fraire-Luna, G. MendozaSuarez, Hydration products and reactivity of blast-furnace slag activated by various alkalis, J. Am. Ceram. Soc. 86 (2003) 2148-2153.
    • [42] R.J. Myers, E. L'Hôpital, J.L. Provis, B. Lothenbach, Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions, Cem. Concr. Res. 68 (2015) 83-93.
    • [43] R. Fischer, H.J. Kuzel, Reinvestigation of the system C4A.nH2O-C4A.CO2.nH2O, Cem. Concr. Res. 12 (1982) 517-526.
    • [44] B. Lothenbach, G. Le Saout, E. Gallucci, K. Scrivener, Influence of limestone on the hydration of Portland cements, Cem. Concr. Res. 38 (2008) 848-860.
    • [45] R.J. Myers, B. Lothenbach, S.A. Bernal, J.L. Provis, Thermodynamic modelling of alkali-activated slag cements, Appl. Geochem. 61 (2015) 233-247.
    • [46] F.P. Glasser, A. Kindness, S.A. Stronach, Stability and solubility relationships in AFm phases: part I. Chloride, sulfate and hydroxide, Cem. Concr. Res. 29 (1999) 861-866.
    • [47] M.C. Gastuche, G. Brown, M.M. Mortland, Mixed magnesium-aluminium hydroxides i. Preparation and characterization of compounds formed in dialysed systems, Clay Miner. 7 (1967) 177-192.
    • [48] X. Duan, D.G. Evans (Eds.), Layered Double Hydroxides, Springer, Berlin Heidelberg, 2006.
    • [49] R. San Nicolas, S.A. Bernal, R. Mejía de Gutiérrez, J.S.J. van Deventer, J.L. Provis, Distinctive microstructural features of aged sodium silicate-activated slag concretes, Cem. Concr. Res. 65 (2014) 41-51.
    • [50] C. Famy, K.L. Scrivener, A.K. Crumbie, What causes differences of C-S-H gel grey levels in backscattered electron images? Cem. Concr. Res. 32 (2002) 1465-1471.
    • [51] E. L'Hôpital, B. Lothenbach, G. Le Saout, D. Kulik, K. Scrivener, Incorporation of aluminium in calcium-silicate-hydrates, Cem. Concr. Res. 75 (2015) 91-103.
    • [52] R.J. Myers, S.A. Bernal, J.D. Gehman, J.S.J. van Deventer, J.L. Provis, The role of Al in cross-linking of alkali-activated slag cements, J. Am. Ceram. Soc. 98 (2014) 996-1004.
    • [53] R. Snellings, Surface chemistry of calcium aluminosilicate glasses, J. Am. Ceram. Soc. 98 (2015) 303-314.
    • [54] R.J. Kirkpatrick, MAS NMR-spectroscopy of minerals and glasses, Rev. Mineral. 18 (1988) 341-403.
    • [55] S.-D. Wang, K.L. Scrivener, 29Si and 27Al NMR study of alkali-activated slag, Cem. Concr. Res. 33 (2003) 769-774.
    • [56] I.G. Richardson, A.R. Brough, R. Brydson, G.W. Groves, C.M. Dobson, Location of aluminum in substituted calcium silicate hydrate (C-S-H) gels as determined by 29Si and 27Al NMR and EELS, J. Am. Ceram. Soc. 76 (1993) 2285-2288.
    • [57] J. Schneider, M.A. Cincotto, H. Panepucci, 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes, Cem. Concr. Res. 31 (2001) 993-1001.
    • [58] G. Engelhardt, D. Michel, High Resolution Solid State NMR of Silicates and Zeolites, John Wiley & Sons, Chichester, 1987.
    • [59] R.J. Myers, S.A. Bernal, R. San Nicolas, J.L. Provis, Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model, Langmuir 29 (2013) 5294-5306.
    • [60] M.R. Jones, D.E. Macphee, J.A. Chudek, G. Hunter, R. Lannegrand, R. Talero, S.N. Scrimgeour, Studies using 27Al MAS NMR of AFm and AFt phases and the formation of Friedel's salt, Cem. Concr. Res. 33 (2003) 177-182.
    • [61] J.L. Bischoff, D.B. Herbst, R.J. Rosenbauer, Gaylussite formation at Mono Lake, California, Geochim. Cosmochim. Acta 55 (1991) 1743-1747.
    • [62] H. Tamura, K. Mita, A. Tanaka, M. Ito, Mechanism of hydroxylation of metal oxide surfaces, J. Colloid Interface Sci. 243 (2001) 202-207.
    • [63] S.A. Bernal, R. San Nicolas, J.S.J. van Deventer, J.L. Provis, Water content modifies the structural development of sodium metasilicate-activated slag binders, ALCONPAT J. 5 (2015) 29-40.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article