LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gillet, V.J.; Webb, S.J.; Sherhod, R.; Judson, P.N.; Thierry, H.; Vessey, J.D (2014)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects:
Knowledge-based systems for toxicity prediction are typically based on rules, known as structural alerts, that describe relationships between structural features and different toxic effects. The identification of structural features associated with toxicological activity can be a time-consuming process and often requires significant input from domain experts. Here, we describe an emerging pattern mining method for the automated identification of activating structural features in toxicity data sets that is designed to help expedite the process of alert development. We apply the contrast pattern tree mining algorithm to generate a set of emerging patterns of structural fragment descriptors. Using the emerging patterns it is possible to form hierarchical clusters of compounds that are defined by the presence of common structural features and represent distinct chemical classes. The method has been tested on a large public in vitro mutagenicity data set and a public hERG channel inhibition data set and is shown to be effective at identifying common toxic features and recognizable classes of toxicants. We also describe how knowledge developers can use emerging patterns to improve the specificity and sensitivity of an existing expert system.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Phylogenetic-Like Trees. J. Chem. Inf. Comput. Sci. 2002, 42, 1069− 1079.
    • (7) Harper, G.; Bravi, G. S.; Pickett, S. D.; Hussain, J.; Green, D. V. S.
    • Sci. 2004, 44, 2145−2156.
    • (8) Takigawa, I.; Mamitsuka, H. Graph Mining: Procedure, Application to Drug Discovery and Recent Advances. Drug Discovery Today 2013, 18, 50−57.
    • (9) Kazius, J.; Nijssen, S.; Kok, J.; Bac̈k, T.; Ijzerman, A. P. Substructure Mining Using Elaborate Chemical Representation. J. Chem. Inf. Model.
    • (10) Lozano, S.; Poezevara, G.; Halm-Lemeille, M. P.; LescotFontaine, E.; Lepailleur, A.; Bissell-Siders, R.; Creḿilleux, B.; Rault, S.; Cuissart, B.; Bureau, R. Introduction of Jumping Fragments in Combination with QSARs for the Assessment of Classification in Ecotoxicology. J. Chem. Inf. Model. 2010, 50, 1330−1339.
    • (11) Poezevara, G.; Cuissart, B.; Creḿilleux, B. Extracting and Summarizing the Frequent Emerging Graph Patterns from a Dataset of Graphs. J. Intell. Inf. Syst. 2011, 37, 333−353.
    • (12) Ferrari, T.; Cattaneo, D.; Gini, G.; Bakhtyari, N. G.; Manganaro, A.; Benfenati, E. Automatic Knowledge Extraction from Chemical Structures: The Case of Mutagenicity Prediction. SAR QSAR Environ.
    • Res. 2013, 24, 631−649.
    • (13) Jullian, N.; Afshar, M. Novel Rule-Based Method for MultiParametric Multi-Objective Decision Support in Lead Optimization Using Kem. Curr. Comput.-Aided Drug Des. 2008, 4, 35−45.
    • (14) Wolff, K. E. In A First Course in Formal Concept Analysis - How to Understand Line Diagrams, The 7th Conference on the Scientific Use of Statistical Software, Heidelberg, Germany, 1993; Gustav Fischer Verlag: Heidelberg, Germany, 1993; pp 429−438.
    • (15) Carpineto, C.; Romano, G. In Galois: An Order-Theoretic Approach to Conceptual Clustering, Tenth International Conference on Machine Learning, Amherst, MA, USA, 1993; Morgan Kaufmann: Amherst, MA, USA, 1993; pp 33−40.
    • (16) Sherhod, R.; Gillet, V. J.; Judson, P. N.; Vessey, J. D. Automating Knowledge Discovery for Toxicity Prediction Using Jumping Emerging Pattern Mining. J. Chem. Inf. Model. 2012, 52, 3074−3087.
    • (17) Dong, G.; Li, J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. In The Fifth International Conference on Knowledge Discovery and Data Mining; Chaudhuri, S., Fayyad, U., Madigan, D., Eds.; Association for Computing Machinery Press: San Diego, CA, USA, 1999; pp 43−52.
    • (18) Auer, J.; Bajorath, J. Emerging Chemical Patterns: A New Methodology for Molecular Classification and Compound Selection. J.
    • Chem. Inf. Model. 2006, 46, 2502−2514.
    • (19) Namasivayam, V.; Hu, Y.; Balfer, J.; Bajorath, J. Classification of Compounds with Distinct or Overlapping Multi-Target Activities and Diverse Molecular Mechanisms Using Emerging Chemical Patterns. J.
    • Chem. Inf. Model. 2013, 53, 1272−1281.
    • (20) Garcia-Borroto, M.; Francisco Martinez-Trinidad, J.; Ariel Carrasco-Ochoa, J. A New Emerging Pattern Mining Algorithm and Its Application in Supervised Classification. In Advances in Knowledge Discovery and Data Mining, Pt I, Proceedings; Zaki, M. J., Yu, J. X., Ravindran, B., Pudi, V., Eds.; 2010; Vol. 6118, pp 150−157.
    • (21) Fan, H.; Ramamohanarao, K. Fast Discovery and the Generalization of Strong Jumping Emerging Patterns for Building Compact and Accurate Classifiers. IEEE Trans. Knowl. Data Eng. 2006, 18, 721−737.
    • (22) Hansen, K.; Mika, S.; Schroeter, T.; Sutter, A.; ter Laak, A.; StegerHartmann, T.; Heinrich, N.; Mueller, K.-R. Benchmark Data Set for in Silico Prediction of Ames Mutagenicity. J. Chem. Inf. Model. 2009, 49, 2077−2081.
    • (23) PubChem. http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?q= r&version=1.2&reqid=2831879572223393786 (accessed May 21, 2014).
    • (24) ChemAxon Kf t Maŕamaros köz 3/a, Budapest, 1037 Hungary.
    • (25) Berthold, M. R.; Cebron, N.; Dill, F.; Gabriel, T. R.; Kotter, T.; Meinl, T.; Ohl, P.; Sieb, C.; Thiel, K.; Wiswedel, B. Knime: The Konstanz Information Miner. Data Analysis, Machine Learning and Applications 2008, 319−326.
    • (26) Lhasa Limited Vitic Nexus 2013, 23 Blenheim Terrace, Woodhouse Lane, Leeds LS2 9HD, UK.
    • (27) Carhart, R. E.; Smith, D. H.; Venkataraghavan, R. Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications. J. Chem. Inf. Comput. Sci. 1985, 25, 64−73.
    • (28) Daylight Daylight Chemical Information Systems, Inc., 120 Vantis - Suite 550, Aliso Viejo, CA 92656, USA. www.daylight.com at http:// www.daylight.com (accessed May 21, 2014).
    • (29) Gillet, V. J.; Willett, P.; Bradshaw, J. Similarity Searching Using Reduced Graphs. J. Chem. Inf. Comput. Sci. 2003, 43, 338−345.
    • (30) Benigni, R. The Benigni/Bossa Rulebase for Mutagenicity and Carcinogenicity−a Module of Toxtree; European Commission Report EUR, 23241: 2008.
    • (31) Aronov, A. M. Predictive in Silico Modeling for Herg Channel Blockers. Drug Discovery Today 2005, 10, 149−155.
    • (32) Mitcheson, J. S.; Chen, J.; Lin, M.; Culberson, C.; Sanguinetti, M.
    • Acad. Sci. U. S. A. 2000, 97, 12329−12333.
    • (33) United States Environmental Protection Agency: Dsstox. http:// www.epa.gov/ncct/dsstox/index.html (accessed May 29, 2014).
    • (34) Morgan, H. L. The Generation of a Unique Machine Description for Chemical Structures-a Technique Developed at Chemical Abstracts Service. J. Chem. Doc. 1965, 5, 107−113.
    • (35) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J.
    • Chem. Inf. Model. 2010, 50, 742−754.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    70
    70%
    58
    58%
  • No similar publications.

Share - Bookmark

Cite this article