LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Viceconti, M.; Hunter, P.; Hose, R. (2015)
Publisher: IEEE
Languages: English
Types: Article
Subjects:
The idea that the purely phenomenological knowledge that we can extract by analyzing large amounts of data can be useful in healthcare seems to contradict the desire of VPH researchers to build detailed mechanistic models for individual patients. But in practice no model is ever entirely phenomenological or entirely mechanistic. We propose in this position paper that big data analytics can be successfully combined with VPH technologies to produce robust and effective in silico medicine solutions. In order to do this, big data technologies must be further developed to cope with some specific requirements that emerge from this application. Such requirements are: working with sensitive data; analytics of complex and heterogeneous data spaces, including nontextual information; distributed data management under security and performance constraints; specialized analytics to integrate bioinformatics and systems biology information with clinical observations at tissue, organ and organisms scales; and specialized analytics to define the "physiological envelope" during the daily life of each patient. These domain-specific requirements suggest a need for targeted funding, in which big data technologies for in silico medicine becomes the research priority.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] D. Laney, 3D Data Management: Controlling Data Volume, Velocity, and Variety, META Group, 2001.
    • [2] O. Terzo, P. Ruiu, E. Bucci, and F. Xhafa, "Data as a Service (DaaS) for Sharing and Processing of Large Data Collections in the Cloud." pp. 475-480.
    • [3] B. Wixom, T. Ariyachandra, D. Douglas, M. Goul, B. Gupta, L. Iyer, U. Kulkarni, J. G. Mooney, G. Phillips-Wren, and O. Turetken, “The Current State of Business Intelligence in Academia: The Arrival of Big Data,” Communications of the Association for Information Systems, vol. 34, no. 1, pp. 1, 2014.
    • [4] A. Wright, “Big data meets big science,” Communications of the ACM, vol. 57, no. 7, pp. 13-15, 2014.
    • [5] J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and L. Brilliant, “Detecting influenza epidemics using search engine query data,” Nature, vol. 457, no. 7232, pp. 1012-1014, 02/19/print, 2009.
    • [6] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers, “Big data: The next frontier for innovation, competition, and productivity,” 2011.
    • [7] J. W. Fenner, B. Brook, G. Clapworthy, P. V. Coveney, V. Feipel, H. Gregersen, D. R. Hose, P. Kohl, P. Lawford, K. M. McCormack, D. Pinney, S. R. Thomas, S. Van Sint Jan, S. Waters, and M. Viceconti, “The EuroPhysiome, STEP and a roadmap for the virtual physiological human,” Philos Trans A Math Phys Eng Sci, vol. 366, no. 1878, pp. 2979-99, Sep 13, 2008.
    • [8] Wikipedia. "Virtual Physiological Human --- Wikipedia, The Free Encyclopedia," 24-September-2014; http://en.wikipedia.org/w/index.php?title=Virtual_Physiological_Huma n&oldid=626773628.
    • [9] F. C. Horn, B. A. Tahir, N. J. Stewart, G. J. Collier, G. Norquay, G. Leung, R. H. Ireland, J. Parra-Robles, H. Marshall, and J. M. Wild, “Lung ventilation volumetry with same-breath acquisition of hyperpolarized gas and proton MRI,” NMR Biomed, Sep 10, 2014.
    • [10] A. Brandts, J. J. Westenberg, M. J. Versluis, L. J. Kroft, N. B. Smith, A. G. Webb, and A. de Roos, “Quantitative assessment of left ventricular function in humans at 7 T,” Magn Reson Med, vol. 64, no. 5, pp. 1471-7, Nov, 2010.
    • [11] E. Schileo, E. Dall'ara, F. Taddei, A. Malandrino, T. Schotkamp, M. Baleani, and M. Viceconti, “An accurate estimation of bone density improves the accuracy of subject-specific finite element models,” J Biomech, vol. 41, no. 11, pp. 2483-91, Aug 7, 2008.
    • [12] L. Grassi, N. Hraiech, E. Schileo, M. Ansaloni, M. Rochette, and M. Viceconti, “Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur,” Med Eng Phys, vol. 33, no. 1, pp. 112-20, Jan, 2011.
    • [13] P. Lamata, S. Niederer, D. Barber, D. Norsletten, J. Lee, R. Hose, and N. Smith, “Personalization of cubic Hermite meshes for efficient biomechanical simulations,” Med Image Comput Comput Assist Interv, vol. 13, no. Pt 2, pp. 380-7, 2010.
    • S. Hammer, A. Jeays, P. L. Allan, R. Hose, D. Barber, W. J. Easson, and P. R. Hoskins, “Acquisition of 3-D arterial geometries and integration with computational fluid dynamics,” Ultrasound Med Biol, vol. 35, no. 12, pp. 2069-83, Dec, 2009.
    • Griffiths, and R. Hose, “Development and validation of models for the investigation of blood clotting in idealized stenoses and cerebral aneurysms,” J Artif Organs, vol. 8, no. 1, pp. 56-62, 2005.
    • Viceconti, “Modelling osteomyelitis,” BMC Bioinformatics, vol. 13 Suppl 14, pp. S12, 2012.
    • Smallwood, B. Chopard, M. Krafczyk, J. Bernsdorf, and A. Hoekstra, “The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery,” Philos Trans A Math Phys Eng Sci, vol. 366, no. 1879, pp. 3343-60, Sep 28, 2008.
    • M. Viceconti, F. Taddei, L. Cristofolini, S. Martelli, C. Falcinelli, and E. Schileo, “Are spontaneous fractures possible? An example of clinical application for personalised, multiscale neuro-musculo-skeletal modelling,” J Biomech, vol. 45, no. 3, pp. 421-6, Feb 2, 2012.
    • V. B. Shim, P. J. Hunter, P. Pivonka, and J. W. Fernandez, “A multiscale framework based on the physiome markup languages for exploring the initiation of osteoarthritis at the bone-cartilage interface,” IEEE Trans Biomed Eng, vol. 58, no. 12, pp. 3532-6, Dec, 2011.
    • S. Karabasov, D. Nerukh, A. Hoekstra, B. Chopard, and P. V. Coveney, “Multiscale modelling: approaches and challenges,” Philos Trans A Math Phys Eng Sci, vol. 372, no. 2021, Aug 6, 2014.
    • M. Viceconti, Multiscale Modeling of the Skeletal System: Cambridge University Press, 2011.
    • Vanholder, M. Malovrh, J. Tordoir, A. Remuzzi, and A. p. Consortium, “Validation of a patient-specific hemodynamic computational model for surgical planning of vascular access in hemodialysis patients,” Kidney Int, vol. 84, no. 6, pp. 1237-45, Dec, 2013.
    • Hose, and J. P. Gunn, “Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study,” JACC Cardiovasc Interv, vol. 6, no. 2, pp. 149- 57, Feb, 2013.
    • Marwan, C. Naber, A. Erglis, S. J. Park, E. H. Christiansen, A. Kaltoft, J. F. Lassen, H. E. Botker, S. Achenbach, and N. X. T. T. S. Group, “Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps),” J Am Coll Cardiol, vol. 63, no. 12, pp. 1145-55, Apr 1, 2014.
    • D. Noble, “Genes and causation,” Philos Trans A Math Phys Eng Sci, vol. 366, no. 1878, pp. 3001-15, Sep 13, 2008.
    • 592, no. Pt 11, pp. 2237-44, Jun 1, 2014.
    • O. Johnell, and J. A. Kanis, “An estimate of the worldwide prevalence and disability associated with osteoporotic fractures,” Osteoporos Int, vol. 17, no. 12, pp. 1726-33, Dec, 2006.
    • P. Lips, “Epidemiology and predictors of fractures associated with osteoporosis,” Am J Med, vol. 103, no. 2A, pp. 3S-8S; discussion 8S11S, Aug 18, 1997.
    • M. L. Bouxsein, and E. Seeman, “Quantifying the material and structural determinants of bone strength,” Best Pract Res Clin Rheumatol, vol. 23, no. 6, pp. 741-53, Dec, 2009.
    • S. K. Sandhu, N. D. Nguyen, J. R. Center, N. A. Pocock, J. A. Eisman, and T. V. Nguyen, “Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram,” Osteoporos Int, vol. 21, no. 5, pp. 863-71, May, 2010.
    • Taddei, “Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: A preliminary study in elderly women,” Bone, vol. 67, pp. 71-80, Oct, 2014.
    • [32] E. V. McCloskey, H. Johansson, A. Oden, and J. A. Kanis, “From relative risk to absolute fracture risk calculation: the FRAX algorithm,” Curr Osteoporos Rep, vol. 7, no. 3, pp. 77-83, Sep, 2009.
    • [33] Z. Schechner, G. Luo, J. J. Kaufman, and R. S. Siffert, “A poisson process model for hip fracture risk,” Med Biol Eng Comput, vol. 48, no. 8, pp. 799-810, Aug, 2010.
    • [34] L. Grassi, E. Schileo, F. Taddei, L. Zani, M. Juszczyk, L. Cristofolini, and M. Viceconti, “Accuracy of finite element predictions in sideways load configurations for the proximal human femur,” J Biomech, vol. 45, no. 2, pp. 394-9, Jan 10, 2012.
    • [35] A. Karlsson, J. Rosander, T. Romu, J. Tallberg, A. Gronqvist, M. Borga, and O. Dahlqvist Leinhard, “Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI,” J Magn Reson Imaging, Aug 11, 2014.
    • [36] D. Schmitter, A. Roche, B. Marechal, D. Ribes, A. Abdulkadir, M. Bach-Cuadra, A. Daducci, C. Granziera, S. Kloppel, P. Maeder, R. Meuli, G. Krueger, and I. Alzheimer's Disease Neuroimaging, “An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease,” Neuroimage Clin, vol. 7, pp. 7-17, 2015.
    • [37] C. Jacobs, E. M. van Rikxoort, T. Twellmann, E. T. Scholten, P. A. de Jong, J. M. Kuhnigk, M. Oudkerk, H. J. de Koning, M. Prokop, C. Schaefer-Prokop, and B. van Ginneken, “Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images,” Med Image Anal, vol. 18, no. 2, pp. 374-84, Feb, 2014.
    • [38] E. Hernlund, A. Svedbom, M. Ivergard, J. Compston, C. Cooper, J. Stenmark, E. V. McCloskey, B. Jonsson, and J. A. Kanis, “Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA),” Arch Osteoporos, vol. 8, no. 1-2, pp. 136, 2013.
    • [39] W. B. Nelson, Accelerated testing: statistical models, test plans, and data analysis: John Wiley & Sons, 2009.
    • [40] C. M. Bishop, Pattern recognition and machine learning: springer New York, 2006.
    • [41] J. Ide, R. Chen, D. Shen, and E. H. Herskovits, “Robust brain registration using adaptive probabilistic atlas,” Med Image Comput Comput Assist Interv, vol. 11, no. Pt 2, pp. 1041-9, 2008.
    • [42] M. Rusu, B. N. Bloch, C. C. Jaffe, N. M. Rofsky, E. M. Genega, E. Feleppa, R. E. Lenkinski, and A. Madabhushi, “Statistical 3D Prostate Imaging Atlas Construction via Anatomically Constrained Registration,” Proc SPIE, vol. 8669, Mar 13, 2013.
    • [43] D. C. Barber, and D. R. Hose, “Automatic segmentation of medical images using image registration: diagnostic and simulation applications,” J Med Eng Technol, vol. 29, no. 2, pp. 53-63, Mar-Apr, 2005.
    • [44] A. K. Duun-Henriksen, S. Schmidt, R. M. Roge, J. B. Moller, K. Norgaard, J. B. Jorgensen, and H. Madsen, “Model identification using stochastic differential equation grey-box models in diabetes,” J Diabetes Sci Technol, vol. 7, no. 2, pp. 431-40, 2013.
    • [45] E. E. Vidal-Rosas, S. A. Billings, Y. Zheng, J. E. Mayhew, D. Johnston, A. J. Kennerley, and D. Coca, “Reduced-order modeling of light transport in tissue for real-time monitoring of brain hemodynamics using diffuse optical tomography,” J Biomed Opt, vol. 19, no. 2, pp. 026008, Feb, 2014.
    • [46] S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometrics and Intelligent Laboratory Systems, vol. 58, no. 2, pp. 109-130, 10/28/, 2001.
    • [47] S. A. Billings, Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains: John Wiley & Sons, 2013.
    • [48] P. Casali, “Risks of the new EU Data protection regulation: an ESMO position paper endorsed by the European oncology community,” Annals of Oncology, vol. 25, no. 8, pp. 1458-1461, 2014.
    • [49] L. Sweeney, “k-anonymity: a model for protecting privacy,” Int. J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557-570, 2002.
    • [50] N. Shomron, Deep Sequencing Data Analysis: Springer, 2013.
    • [51] R. P. Tracy, “'Deep phenotyping': characterizing populations in the era of genomics and systems biology,” Curr Opin Lipidol, vol. 19, no. 2, pp. 151-7, Apr, 2008.
    • [52] C. Canstein, P. Cachot, A. Faust, A. F. Stalder, J. Bock, A.
    • Frydrychowicz, J. Kuffer, J. Hennig, and M. Markl, “3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries,” Magn Reson Med, vol. 59, no. 3, pp.
    • 535-46, Mar, 2008.
    • Martin, and A. C. Bunck, “Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine,” PLoS One, vol. 7, no.
    • 12, pp. e52284, 2012.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    43
    43%
  • No similar publications.

Share - Bookmark

Cite this article