Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
David, Arthur; Lange, Anke; Abdul-Sada, Alaa; Tyler, Charles R; Hill, Elizabeth M (2016)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QD0415, QD0071
Fish can be exposed to a complex mixture of chemical contaminants, including pharmaceuticals, present in discharges of wastewater treatment works (WwTWs) effluents. There is little information on the effects of effluent exposure on fish metabolism, especially the small molecule signaling compounds which are the biological target of many pharmaceuticals. We applied a newly developed sensitive nanoflow-nanospray mass spectrometry nontargeted profiling technique to identify changes in the exposome and metabolome of roach (Rutilus rutilus) exposed to a final WwTWs effluent for 15 days. Effluent exposure resulted in widespread reduction (between 50% and 90%) in prostaglandin (PG) profiles in fish tissues and plasma with disruptions also in tryptophan/serotonin, bile acid and lipid metabolism. Metabolite disruptions were not explained by altered expression of genes associated with the PG or tryptophan metabolism. Of the 31 pharmaceutical metabolites that were detected in the effluent exposome of fish, 6 were nonsteroidal anti-inflammatory drugs but with plasma concentrations too low to disrupt PG biosynthesis. PGs, bile acids, and tryptophan metabolites are important mediators regulating a diverse array of physiological systems in fish and the identity of wastewater contaminants disrupting their metabolism warrants further investigation on their exposure effects on fish health.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Li, W. C., Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ. Pollut. 2014, 187, 193-201.
    • 2. Kostich, M. S.; Batt, A. L.; Lazorchak, J. M., Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environ. Pollut. 2014, 184, 354-359.
    • 3. der Beek, T. A.; Weber, F. A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Kuster, A., Pharmaceuticals in the environment-global occurences and perspectives. Environ. Toxicol. Chem. 2016, 35, (4), 823-835.
    • 4. Gunnarsson, L.; Jauhiainen, A.; Kristiansson, E.; Nerman, O.; Larsson, D. G. J., Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ Sci Technol. 2008, 42, (15), 5807-5813.
    • 5. Rand-Weaver, M.; Margiotta-Casaluci, L.; Patel, A.; Panter, G. H.; Owen, S. F.; Sumpter, J. P., The Read-Across Hypothesis and Environmental Risk Assessment of Pharmaceuticals. Environ Sci Technol. 2013, 47, (20), 11384-11395.
    • 6. Valenti, T. W.; Gould, G. G.; Berninger, J. P.; Connors, K. A.; Keele, N. B.; Prosser, K. N.; Brooks, B. W., Human Therapeutic Plasma Levels of the Selective Serotonin Reuptake Inhibitor (SSRI) Sertraline Decrease Serotonin Reuptake Transporter Binding and ShelterSeeking Behavior in Adult Male Fathead Minnows. Environ. Sci. Technol. 2012, 46, (4), 2427- 2435.
    • 7. Margiotta-Casaluci, L.; Owen, S. F.; Cumming, R. I.; de Polo, A.; Winter, M. J.; Panter, G. H.; Rand-Weaver, M.; Sumpter, J. P., Quantitative Cross-Species Extrapolation between Humans and Fish: The Case of the Anti-Depressant Fluoxetine. PLoS One. 2014, 9, (10).
    • 8. Ramirez, A. J.; Brain, R. A.; Usenko, S.; Mottaleb, M. A.; O'Donnell, J. G.; Stahl, L. L.; Wathen, J. B.; Snyder, B. D.; Pitt, J. L.; Perez-Hurtado, P.; Dobbins, L. L.; Brooks, B. W.; Chambliss, C. K., Occurrence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States. Environ Toxicol Chem. 2009, 28, (12), 2587-2597.
    • 9. Meador, J. P.; Yeh, A.; Young, G.; Gallagher, E. P., Contaminants of emerging concern in a large temperate estuary. Environ Pollut. 2016, 213, 254-267.
    • 10. Tanoue, R.; Nomiyama, K.; Nakamura, H.; Kim, J. W.; Isobe, T.; Shinohara, R.; Kunisue, T.; Tanabe, S., Uptake and Tissue Distribution of Pharmaceuticals and Personal Care Products in Wild Fish from Treated-Wastewater-Impacted Streams. Environ Sci Technol. 2015, 49, (19), 11649-11658.
    • 11. Hamilton, P. B.; Cowx, I. G.; Oleksiak, M. F.; Griffiths, A. M.; Grahn, M.; Stevens, J. R.; Carvalho, G. R.; Nicol, E.; Tyler, C. R., Population-level consequences for wild fish exposed to sublethal concentrations of chemicals - a critical review. Fish Fish. 2015, 17, (3), 545-566 12. Skelton, D. M.; Ekman, D. R.; Martinovic-Weigelt, D.; Ankley, G. T.; Villeneuve, D. L.; Teng, Q.; Collette, T. W., Metabolomics for in situ environmental monitoring of surface waters impacted by contaminants from both point and nonpoint sources. Environ. Sci. Technol. 2014, 48, (4), 2395-2403.
    • 13. Alvarez-Munoz, D.; Al-Salhi, R.; Abdul-Sada, A.; Gonzalez-Mazo, E.; Hill, E. M., Global metabolite profiling reveals transformation pathways and novel metabolomic responses in Solea senegalensis after exposure to a non-ionic surfactant. Environ. Sci. Technol. 2014, 48, (9), 5203-5210.
    • 14. Al-Salhi, R.; Abdul-Sada, A.; Lange, A.; Tyler, C. R.; Hill, E. M., The xenometabolome and novel contaminant markers in fish exposed to a wastewater treatment works effluent. Environ Sci Technol. 2012, 46, (16), 9080-9088.
    • 15. David, A.; Abdul-Sada, A.; Lange, A.; Tyler, C. R.; Hill, E. M., A new approach for plasma (xeno)metabolomics based on solid-phase extraction and nanoflow liquid chromatographynanoelectrospray ionisation mass spectrometry. J Chromatog.r A. 2014, 1365, 72-85.
    • 16. Chetwynd, A. J.; Abdul-Sada, A.; Hill, E. M., Solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionization mass spectrometry for improved global urine metabolomics. Anal. Chem. 2015, 87, (2), 1158-1165.
    • 17. Chetwynd, A. J.; David, A.; Hill, E. M.; Abdul-Sada, A., Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno)metabolome. J Mass Spectrom. 2014, 49, (10), 1063-1069.
    • 18. Flores-Valverde, A. M.; Hill, E. M., Methodology for profiling the steroid metabolome in animal tissues using ultraperformance liquid chromatography-electrospray-time-of-flight mass spectrometry. Anal. Chem. 2008, 80, (22), 8771-8779.
    • 19. Wiklund, S.; Johansson, E.; Sjostrom, L.; Mellerowicz, E. J.; Edlund, U.; Shockcor, J. P.; Gottfries, J.; Moritz, T.; Trygg, J., Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008, 80, (1), 115-122.
    • 20. Benjamini, Y.; Hochberg, Y., Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. J Roy Stat Soc B Met. 1995, 57, (1), 289-300.
    • 21. Chauvenet, W., Methods of least squares. 1863, Reprinted (1960) 5th edition. Dover, NY., 469-566.
    • 22. Pradhan, A.; Olsson, P. E., Juvenile Ovary to Testis Transition in Zebrafish Involves Inhibition of Ptges. Biol. Reprod. 2014, 91, (2), 15.
    • 23. Lange, A.; Paull, G. C.; Hamilton, P. B.; Iguchi, T.; Tyler, C. R., Implications of persistent exposure to treated wastewater effluent for breeding in wild roach (Rutilus rutilus) populations. Environ. Sci. Technol. 2011, 45, (4), 1673-1679.
    • 24. Reyes, H., Phylogenetic diversity of bile acids. Revista Medica De Chile 1994, 122, (8), 944- 950.
    • 25. Ridlon, J. M.; Kang, D. J.; Hylemon, P. B., Bile salt biotransformations by human intestinal bacteria. Journal of Lipid Research 2006, 47, (2), 241-259.
    • 26. Cortes, J.; Alvarez, C.; Santana, P.; Torres, E.; Mercado, L., Indoleamine 2,3-dioxygenase: First evidence of expression in rainbow trout (Oncorhynchus mykiss). Dev. Comp. Immunol. 2016, 65, 73-78.
    • 27. Sainio, E. L.; Pulkki, K.; Young, S. N., L-tryptophan: Biochemical, nutritional and pharmacological aspects. Amino Acids 1996, 10, (1), 21-47.
    • 28. Avella, M.; Part, P.; Ehrenfeld, J., Regulation of Cl- secretion in seawater fish (Dicentrarchus labrax) gill respiratory cells in primary culture. J. Physiol.-London. 1999, 516, (2), 353-363.
    • 29. Gomez-Abellan, V.; Sepulcre, M. P., The role of prostaglandins in the regulation of fish immunity. Mol. Immunol. 2016, 69, 139-145.
    • 30. Goncalves, D.; Costa, S. S.; Teles, M. C.; Silva, H.; Ingles, M.; Oliveira, R. F., Oestradiol and prostaglandin F2 alpha regulate sexual displays in females of a sex-role reversed fish. Proc. R. Soc. B-Biol. Sci. 2014, 281, (1778), 1-9.
    • 31. Cha, Y. I.; Solnica-Krezel, L.; DuBois, R. N., Fishing for prostanoids: Deciphering the developmental functions of cyclooxygenase-derived prostaglandins. Dev. Biol. 2006, 289, (2), 263-272.
    • 32. Winberg, S.; Thornqvist, P. O., Role of brain serotonin in modulating fish behavior. Curr. Zool. 2016, 62, (3), 317-323.
    • 33. Yabuki, Y.; Koide, T.; Miyasaka, N.; Wakisaka, N.; Masuda, M.; Ohkura, M.; Nakai, J.; Tsuge, K.; Tsuchiya, S.; Sugimoto, Y.; Yoshihara, Y., Olfactory receptor for prostaglandin F-2 alpha mediates male fish courtship behavior. Nat. Neurosci. 2016, 19, (7), 897-904.
    • 34. Prasad, P.; Ogawa, S.; Parhar, I. S., Role of serotonin in fish reproduction. Front. Neurosci. 2015, 9, 1-9.
    • 35. Shajib, M. S.; Khan, W. I., The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol. 2015, 213, (3), 561-574.
    • 36. Shakarchi, K.; Zachar, P. C.; Jonz, M. G., Serotonergic and cholinergic elements of the hypoxic ventilatory response in developing zebrafish. J. Exp. Biol. 2013, 216, (5), 869-880.
    • 37. Keating, N.; Mroz, M. S.; Scharl, M. M.; Marsh, C.; Ferguson, G.; Hofmann, A. F.; Keely, S. J., Physiological concentrations of bile acids down-regulate agonist induced secretion in colonic epithelial cells. J. Cell. Mol. Med. 2009, 13, (8B), 2293-2303.
    • 38. Fidalgo, S.; Ivanov, D. K.; Wood, S. H., Serotonin: from top to bottom. Biogerontology 2013, 14, (1), 21-45.
    • 39. Dey, I.; Lejeune, M.; Chadee, K., Prostaglandin E-2 receptor distribution and function in the gastrointestinal tract. Br. J. Pharmacol. 2006, 149, (6), 611-623.
    • 40. Bhandari, K.; Venables, B., Ibuprofen bioconcentration and prostaglandin E2 levels in the bluntnose minnow Pimephales notatus. Comp. Biochem. Physiol. C-Toxicol. Pharmacol 2011, 153, (2), 251-257.
    • 41. Morthorst, J. E.; Lister, A.; Bjerregaard, P.; Van der Kraak, G., Ibuprofen reduces zebrafish PGE(2) levels but steroid hormone levels and reproductive parameters are not affected. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2013, 157, (2), 251-257.
    • 42. Mehinto, A. C.; Hill, E. M.; Tyler, C. R., Uptake and Biological Effects of Environmentally Relevant Concentrations of the Nonsteroidal Anti-inflammatory Pharmaceutical Diclofenac in Rainbow Trout (Oncorhynchus mykiss). Environ. Sci. Technol. 2010, 44, (6), 2176-2182.
    • 43. Schulz, M.; Iwersen-Bergmann, S.; Andresen, H.; Schmoldt, A., Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics. Crit Care. 2012, 16, (4), R136.
    • 44. Brown, J. N.; Paxeus, N.; Forlin, L.; Larsson, D. G. J., Variations in bioconcentration of human pharmaceuticals from sewage effluents into fish blood plasma. Environ. Toxicol. Pharmacol. 2007, 24, (3), 267-274.
    • 45. Kugathas, S.; Audouze, K.; Ermler, S.; Orton, F.; Rosivatz, E.; Scholze, M.; Kortenkamp, A., Effects of Common Pesticides on Prostaglandin D2 (PGD2) Inhibition in SC5 Mouse Sertoli Cells, Evidence of Binding at the COX-2 Active Site, and Implications for Endocrine Disruption. Environ. Health Perspect. 2016, 124, (4), 452-459.
    • 46. Kristensen, D. M.; Skalkam, M. L.; Audouze, K.; Lesne, L.; Desdoits-Lethimonier, C.; Frederiksen, H.; Brunak, S.; Skakkebaek, N. E.; Jegou, B.; Hansen, J. B.; Junker, S.; Leffers, H., Many Putative Endocrine Disruptors Inhibit Prostaglandin Synthesis. Environ. Health Perspect. 2011, 119, (4), 534-541.
    • 47. Keller, V. D. J.; Williams, R. J.; Lofthouse, C.; Johnson, A. C., Worldwide estimation of river concentrations of any chemical originating from sewage treatment plants using dilution factors. Environ. Toxicol. Chem. 2014, 33, (2), 447-452. Retention Observed Molecular time molecular ion ion species Metabolites decreased in plasma 6.19 219.1136 M+H 13.61 353.2326 M-H 14.20 297.1702 M-H Metabolites increased in plasma 15.80 383.2068 M-H 14.74 19.29 6.01 4.27
  • No similar publications.

Share - Bookmark

Cite this article