LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Channon, AD; Damper, RI (2000)
Publisher: Taylor & Francis
Languages: English
Types: Article
Subjects: QA75
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Channon, A. D. and R. I. Damper (1998a). Evolving novel behaviors via natural selection. In C. Adami, R. Belew, H. Kitano, and C. Taylor (Eds.), Proceedings of Artificial Life VI, Los Angeles, pp. 384-388. Cambridge, MA: MIT Press.
    • Channon, A. D. and R. I. Damper (1998b). Perpetuating evolutionary emergence. In R. Pfeifer, B. Blumberg, J.-A. Meyer, and S. Wilson (Eds.), From Animals to Animats 5: Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior (SAB98), Zurich, pp. 534-539. Cambridge, MA: MIT Press.
    • Cliff, D., I. Harvey, and P. Husbands (1992). Incremental evolution of neural network architectures for adaptive behaviour. Technical Report CSRP256, University of Sussex School of Cognitive and Computing Sciences.
    • Cliff, D. and G. Miller (1995). Tracking the red queen: Measurements of adaptive progress in coevolutionary simulations. In F. Morán, A. Moreno, J. J. Merelo, and P. Chacón (Eds.), Advances in Artificial Life: Proceedings of the Third European Conference on Artificial Life, pp. 200-218. New York: Springer Verlag.
    • Dawkins, R. and J. R. Krebs (1979). Arms races between and within species. Proceedings of the Royal Society of London B 205, 489-511.
    • Fogel, L. J. (1962). Autonomous automata. Industrial Research 4, 14-19.
    • Fogel, L. J., A. J. Owens, and M. J. Walsh (1966). Artificial Intelligence through Simulated Evolution. New York: John Wiley.
    • Fraser, A. S. (1957). Simulation of genetic systems by automatic digital computers. Australian Journal of Biological Sciences 10, 484-491.
    • Gers, F. and H. de Garis (1996). CAM-Brain: A new model for ATR's cellular automata based artificial brain project. In Proceedings of ICES'96: International Conference on Evolvable Systems.
    • Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley.
    • Gruau, F. (1996). Artificial cellular development in optimization and compilation. Technical report, Psychology Department, Stanford University, Palo Alto, CA.
    • Harnad, S. (1993). Artificial life: Synthetic vs. virtual. In C. G. Langton (Ed.), Proceedings of Artificial Life III, pp. 539-552. Reading, MA: Addison-Wesley.
    • Harvey, I. (1992). Species adaptation genetic algorithms: A basis for a continuing SAGA. In F. J. Varela and P. Bourgine (Eds.), Towards a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 346-354. Cambridge, MA: MIT Press/Bradford Books. Also available as report CSRP221, School of Cognitive and Computing Sciences, University of Sussex.
    • Harvey, I. (1993a). The Artificial Evolution of Adaptive Behaviour. Ph. D. thesis, School of Cognitive and Computing Sciences, University of Sussex.
    • Harvey, I. (1993b). Evolutionary robotics and SAGA: the case for hill crawling and tournament selection. In C. G. Langton (Ed.), Proceedings of Artificial Life III, pp. 299-326. Reading, MA: Addison-Wesley. Also available as report CSRP222, School of Cognitive and Computing Sciences, University of Sussex.
    • Harvey, I. (1997). Cognition is not computation: Evolution is not optimisation. In W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud (Eds.), Proceedings of International Conference on Artificial Neural Networks (ICANN 97), Special Session on Adaptive Autonomous Agents at ICANN97, Lausanne, Switzerland, pp. 685-690. Berlin: Springer-Verlag.
    • Harvey, I., P. Husbands, and D. Cliff (1992). Issues in evolutionary robotics. In J. A. Meyer, H. Roitblat, and S. Wilson (Eds.), From Animals to Animats 2: Proceedings of the Second International Conference on Simulation of Adaptive Behavior (SAB92), pp. 364-373. Cambridge, MA: MIT Press/Bradford Books. Also available as report CSRP219, School of Cognitive and Computing Sciences, University of Sussex.
    • Hillis, W. D. (1990). Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42, 228-234.
    • Holland, J. H. (1962). Outline for a logical theory of adaptive systems. Journal of the ACM 9(3), 297-314.
    • Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press. 2nd edition: MIT Press, 1992.
    • Holland, J. H. (1992). Genetic algorithms. Scientific American 267(1), 44-50.
    • Husbands, P., I. Harvey, and D. Cliff (1993). Analysing recurrent dynamical networks evolved for robot control. In Proceedings of the Third IEE International Conference on Artificial Neural Networks (IEE-ANN93), pp. 158-162. London: IEE Press.
    • Kauffman, S. and S. Levin (1987). Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology 128, 11-45.
    • Kitano, H. (1990). Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4, 461-476.
    • Koza, J. R. (1990). Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems. Technical Report STAN-CS-90-1314, Department of Computer Science, Stanford University, Palo Alto, CA.
    • Koza, J. R. (1992). Genetic Programming. Cambridge, MA: MIT Press/Bradford Books.
    • Koza, J. R. (1993). Artificial life: Spontaneous emergence of self-replicating and evolutionary selfimproving computer programs. In C. G. Langton (Ed.), Proceedings of Artificial Life III, pp. 225- 262. Reading, MA: Addison-Wesley.
    • Langton, C. G. (1989). Artificial life. In C. G. Langton (Ed.), Proceedings of Artificial Life, pp. 1-47. Redwood City, CA: Addison-Wesley.
    • Lee, D. W. and K. B. Sim (1998). Evolving cellular automata neural systems 1 (ECANS1). In Proceedings of The Third Asian Fuzzy System Symposium, Masan, Korea, pp. 158-163.
    • Lindenmayer, A. (1968). Mathematical models for cellular interaction in development. Journal of Theoretical Biology 18, 280-315. Parts I and II.
    • Lotka, A. J. (1925). Elements of Physical Biology. Baltimore, OH: Williams and Wilkins. Reprinted as Elements of Mathematical Biology, Dover Press, 1956.
    • Mayr, E. (1960). The emergence of evolutionary novelties. In S. Tax (Ed.), Evolution after Darwin, The University of Chicago Centennial, Vol. I: The Evolution of Life, pp. 349-380. Chicago, IL: University of Chicago Press.
    • McCulloch, W. S. and W. Pitts (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115-133.
    • Packard, N. H. (1989). Intrinsic adaptation in a simple model for evolution. In C. G. Langton (Ed.), Proceedings of Artificial Life, pp. 141-155. Redwood City, CA: Addison-Wesley.
    • Ray, T. S. (1991). An approach to the synthesis of life. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen (Eds.), Proceedings of Artificial Life II, pp. 371-408. Redwood City, CA: AddisonWesley.
    • Ray, T. S. (1992). Evolution, ecology and optimization of digital organisms. Technical Report 92- 08-042, Santa Fe Institute, Santa Fe, NM.
    • Ray, T. S. (1996). Artificial life. In W. Gilbert and G. T. Valentini (Eds.), From Atoms to Minds. Rome: Istituto della Enciclopedia Italiana Treccani.
    • Ray, T. S. (1997). Selecting naturally for differentiation. In J. R. Koza, K. D. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo (Eds.), Genetic Programming 1997: Proceedings of the Second Annual Conference, pp. 414-419. San Francisco, CA: Morgan Kaufmann.
    • Reynolds, C. W. (1992). An evolved, vision-based behavioral model of coordinated group motion. In J. A. Meyer, H. Roitblat, and S. Wilson (Eds.), From Animals to Animats 2: Proceedings of the Second International Conference on Simulation of Adaptive Behavior (SAB92), pp. 384-392. Cambridge, MA: MIT Press.
    • Reynolds, C. W. (1994). Competition, coevolution and the game of Tag. In R. A. Brooks and P. Maes (Eds.), Proceedings of Artificial Life IV, pp. 59-69. Cambridge, MA: MIT Press.
    • Rucker, R. (1993). Artificial Life Lab. Corte Madera, CA: Waite Group Press.
    • Sannier, A. V. and E. D. Goodman (1987). Genetic learning procedures in distributed environments. Technical report, A.H. Case Center for Computer-Aided Engineering and Manufacturing, Michigan State University, East Lansing, MI.
    • Skipper, J. (1992). The computer zoo - evolution in a box. In F. J. Varela and P. Bourgine (Eds.), Towards a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 355-364. Cambridge, MA: MIT Press/Bradford Books.
    • Steels, L. (1994). The artificial life roots of artificial intelligence. Artificial Life Journal 1(1), 89-125.
    • Stephan, A. (1998). Varieties of emergence in artificial and natural systems. Zeitschrift fur Naturforschung C-A Journal of Biosciences 53(7-8), 639-656.
    • Stork, D. G., B. Jackson, and S. Walker (1991). 'Non-optimality' via pre-adaptation in simple neural systems. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen (Eds.), Proceedings of Artificial Life II, pp. 409-429. Redwood City, CA: Addison-Wesley.
    • Taylor, T. and J. Hallam (1997). Studying evolution with self-replicating computer programs. In P. Husbands and I. Harvey (Eds.), Proceedings of the Fourth European Conference on Artificial Life (ECAL97), Brighton, pp. 550-559. Cambridge, MA: MIT Press.
    • Vaario, J. and K. Shimohara (1997). Synthesis of developmental and evolutionary modeling of adaptive autonomous agents. In W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud (Eds.), Proceedings of International Conference on Artificial Neural Networks (ICANN 97), Special Session on Adaptive Autonomous Agents at ICANN97, Lausanne, Switzerland, pp. 721-725. Berlin: SpringerVerlag.
    • Volterra, V. (1926). Variations and fluctuations of the number of individuals in animal species living together. In R. N. Chapman (Ed.), Animal Ecology, pp. 409-448. New York: McGraw-Hill.
    • Wilson, S. W. (1991). The animat path to AI. In S. W. Wilson and J.-A. Meyer (Eds.), From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior (SAB), pp. 15-21. Cambridge, MA: Bradford Books/MIT Press.
    • Yaeger, L. (1993). Computational genetics, physiology, metabolism, neural systems, learning, vision, and behavior or PolyWorld: Life in a new context. In C. G. Langton (Ed.), Proceedings of Artificial Life III, pp. 263-298. Reading, MA: Addison-Wesley.
    • Zaera, N., D. Cliff, and J. Bruten (1996). (Not) evolving collective behaviours in synthetic fish. In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, and S. Wilson (Eds.), From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (SAB96), pp. 635-644. Cambridge, MA: MIT Press/Bradford Books.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article