LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Khan, Irum Nawaz
Languages: English
Types: Unknown
Subjects:
OBJECTIVE This thesis examines sex differences in the structural properties of the corpus callosum (CC) during adolescence and investigates the possible role of sex hormones in the development of these sex differences, as well as hormonal effects on the inter-individual variations in the structure of the CC in young women. DESIGN This thesis is conducted on three separate study samples: 1) the Saguenay Youth Study (SYS) sample (n=737); 2) the IMAGEN Study sample (n=1,979); and 3) the Cycle Study sample (n=26). The SYS and IMAGEN studies are large-scale studies carried out with magnetic resonance imaging (MRI) in typically developing adolescents from Canada (12 to 18 years) and Europe (13 to 15 years), respectively. In these studies, the “sex hormone-CC” relationship is explored by examining the association between the CC and: testosterone level, duration of sex hormone exposure (since menarche), puberty stage and contraceptive use. The Cycle study examines the CC of 13 freely cycling and 13 oral contraceptives (OCP) using young women (18 to 30 years) scanned using MRI across four separate phases of their menstrual cycle. Freesurfer-based computational anatomy is used to estimate the volume of the total corpus callosum and its segments in all three studies. Magnetization transfer imaging (MTI) is used to assess microstructural properties of the corpus callosum in the Cycle study. RESULTS The relative volume of the corpus callosum is seen to be sexually dimorphic in both the SYS and IMAGEN adolescents with a female versus male advantage that is particularly significant for the anterior, central and posterior segment of the corpus callosum; the mid-anterior segment is larger in males versus females. Pubertal stage of adolescent boys (SYS) demonstrates a negative correlation with the relative volume of the anterior CC and a positive correlation with the relative volume of the mid-anterior CC. These associations are consistent with the sex differences observed (anterior: F>M; mid-anterior: M>F), thus suggesting that male sex hormones that are responsible for inducing pubertal development of boys may play a role in generating the sexually dimorphic volume of the corpus callosum in a region-specific manner. Contraceptive use in adolescent girls (SYS and IMAGEN) is negatively associated with the relative volume of the corpus callosum. In addition, the Cycle study demonstrates a trend for lower MTR values in women using contraceptives versus freely cycling women, thus suggesting that the natural sex steroids suppressed by use of oral contraceptives may exert a positive effect on the volume of the CC, possibly by increasing the degree of myelination. The Cycle study demonstrates an increase in the relative volume of the total corpus callosum of freely cycling women from the ovulatory to the luteal phase with corresponding decreases in the MTR value of the total CC. This finding suggests that increased production of progesterone during the luteal phase may cause an increase in the relative volume of the CC, possibly by increasing the axonal calibre. CONCLUSION Sex steroids influence the structure (relative volume and MTR) of the corpus callosum.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Grant R, Condon B, Lawrence A, Hadley DM, Patterson J, Bone I et al. (1988). Is cranial CSF volume under hormonal influence? An MR study. J Comput Assist Tomogr, 12(1): 36-39.
    • Grumbach MM, Styne DM, Larsen PR, Kronenberg HM, Melmed S, Polonsky KS. (2003). Puberty ontogeny, neuroendo-crinology, physiology, and disorders. In: Williams Textbook of Endocrinology, Elsevier, New York, pp. 1115-1286.
    • Gur RC, Gunning-Dixon F, Bilker WB, & Gur RE. (2002). Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cereb Cortex, 12(9): 998-1003.
    • Gur RC, Turetsky BI, Matsui M, Yan M, Bilker W, Hughett P, Gur RE. (1999). Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J Neurosci, 19(10): 4065-72.
    • Habib M, Gayraud D, Oliva A, Regis J, Salamon G, Khalil R. (1991). Effects of handedness and sex on the morphology of the corpus callosum: A study with brain magnetic resonance imaging. Brain and cognition, 16(1): 41-61.
    • Häfner H. (2003). Gender differences in schizophrenia. Psychoneuroendocrinology, 28 Suppl 2: 17-54.
    • Haier RJ, Jung RE, Yeo RA, Head K, Alkire MT. (2004). Structural brain variation and general intelligence. Neuroimage, 23(1): 425-33.
    • Guyton AC, and Hall JE. (2011) Guyton and Hall Textbook of Medical Physiology. Philadelphia, PA: Saunders/Elsevier, 2011.
    • Halpern DF. (2000). Sex differences in cognitive abilities. Mahwah: Lawrence Erlbaum.
    • Hampson E. (1990). Variations in Sex-Related Cognitive Abilities across the Menstrual Cycle. Brain and Cognition, 14(1): 26-43
    • Hasan KM, Gupta RK, Santos RM, Wolinsky JS, Narayana PA. (2005). Diffusion tensor fractional anisotropy of the normal-appearing seven segments of Hausmann M, Slabbekoorn D, Van Goozen SH, Cohen-Kettenis PT, Güntürkün O. (2000). Sex hormones affect spatial abilities during the menstrual cycle. Behav Neurosci, 114(6): 1245-50.
    • Hayakawa, K, Konishi Y, Kuriyama M, Konishi K, & Matsuda T. (1991). Normal brain maturation in MRI. Eur J Radiol, 12(3): 208-215.
    • Hemrika DJ, Slaats EH, Kennedy JC, de Vries Robles-Korsen TJ, Schoemaker J. (1993). Pulsatile luteinizing hormone secretion during the first and the fourth cycle on two different oral contraceptives containing gestodene. Acta Endocrinol (Copenh), 129(3): 229-36.
    • Hines M, Chiu L, McAdams LA, Bentler PM, Lipcamon J. (1992). Cognition and the corpus callosum: verbal fluency, visuospatial ability, and language lateralization related to midsagittal surface areas of callosal subregions. Behav Neurosci, 106(1): 3-14.
    • Hines RJ, Paul LK, Brown WS. (2002). Spatial attention in agenesis of the corpus callosum: shifting attention between visual fields. Neuropsychologia, 40(11): 1804-1814.
    • Hofer S, Frahm J. (2006). Topography of the human corpus callosum revisited-- comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage, 32(3): 989-94.
    • Hofer S, Merboldt KD, Tammer R, Frahm J. (2008). Rhesus monkey and human share a similar topography of the corpus callosum as revealed by diffusion tensor MRI in vivo. Cereb Cortex, 18(5): 1079-84.
    • Hofman PA, Kemerink GJ, Jolles J, Wilmink JT (1999). Quantitative analysis of magnetization transfer images of the brain: effect of closed head injury, age and sex on white matter. Magn Reson Med, 42(4): 803-6.
    • Hsu JL, Leemans A, Bai CH, Lee CH, Tsai YF, Chiu HC, Chen WH. (2008). Gender differences and age related white matter changes of the human brain: a diffusion tensor imaging study. Neuroimage, 39 (2): 566-77.
    • Huster RJ, Westerhausen R, Kreuder F, Schweiger E, Wittling W. (2009) Hutchinson A, Mathias J, Banich M. (2008). Corpus callosum morphology in children and adolescents with attention deficit hyperactivity disorder: a meta-analytic review. Neuropsychology, 22(3): 341-9.
    • Hutchinson AD, Mathias JL, Jacobson BL, Ruzic L, Bond AN, Banich MT. (2009). Relationship between intelligence and the size and composition of the corpus callosum. Exp Brain Res, 192(3): 455-64.
    • Hutchinson AD, Mathias JL, Banich MT. (2008). Corpus callosum morphology in children and adolescents with attention deficit hyperactivity disorder: a meta-analytic review. Neuropsychology, 22(3): 341-9.
    • Huxley TH. (1863). Man's Place in Nature. McMillan, London, UK.
    • Hwang SJ, Ji EK, Lee EK, Kim YM, Shin DY, Cheon YH, Phyu IJ. (2004). Neuroreport, 15(6), 1029-32. Jacobson CD, Gorski RA. (1981). Neurogenesis of the sexually dimorphic nucleus of the preoptic area in the rat. J Comp Neurol, 196(3): 519-529.
    • Jensen AR, Reynolds CR. (1983). Sex differences on the WISC-R. Personality and Individual Differences, 4(2): 223-226
    • Joffe TH, Tarantal AF, Rice K, Leland M, Oerke AK, Rodeck C, Geary M, Hindmarsh P, Wells JC, Aiello LC. (2005). Fetal and infant head circumference sexual dimorphism in primates. Am J Phys Anthropol, 126(1): 97-110.
    • Johansen-Berg H, Della-Maggiore V, Behrens TE, Smith SM, Paus T. (2007). Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. Neuroimage, 36 Suppl 2: T16-21.
    • Johnson SC, Farnworth T, Pinkston JB, Bigler ED, Blatter DD. (1994). Corpus callosum surface area across the human adult life span: effect of age and gender. Brain Res Bull, 35(4): 373-7.
    • Kafouri S, Leonard G, Perron M, Richer L, Séguin JR, Veillette S, Pausova Z, Paus T. (2009). Maternal cigarette smoking during pregnancy and cognitive performance in adolescence. Int J Epidemiol, 38(1): 158-72.
    • Kansaku K, Yamaura A, Kitazawa S. (2000). Sex differences in lateralization revealed in the posterior language areas. Cereb Cortex, 10(9): 866-72.
    • Kilian S, Brown WS, Hallam BJ, McMahon W, Lu J, Johnson M, Bigler ED, Lainhart J. (2008). Regional callosal morphology in autism and macrocephaly. Dev Neuropsychol, 33(1): 74-99.
    • Kimura D. (1992). Sex differences in the brain. Sci Am, 267(3): 118-25.
    • Kimura D. (1994). Body asymmetry and intellectual pattern. Personality and Individual Differences, 17: 53-60.
    • Kimura D. (1994). Body asymmetry and intellectual pattern. Personality and Individual Differences, 17(1): 53-60.
    • Kimura D. (2002). Sex hormones influence human cognitive pattern. Neuro Endocrinol Lett, 23 Suppl 4: 67-77.
    • Klein J, Vilanova A, Ledochowitsch P, Bittihn P, Hahn HK, Konrad O, Rexilius J, and Peitge HO. Improving perception of brain structure using fiber clustering. https://spie.org/documents/Newsroom/Imported/0771/0771-2007-07- 25.pdf
    • Kompus K, Kalpouzos G, Westerhausen R. (2011). The size of the anterior corpus callosum correlates with the strength of hemispheric encoding-retrieval asymmetry in the ventrolateral prefrontal cortex. Brain Res, 1419(1): 61-7.
    • Koshi R, Koshi T, Jeyaseelan L, Vettivel S. (1997). Morphology of the corpus callosum in human fetuses. Clin Anat, 10(1): 22-6.
    • Kubicki M, Park H, Westin CF, Nestor PG, Mulkern RV, Maier SE, Niznikiewicz M, Connor EE, Levitt JJ, Frumin M, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. (2005). DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage, 26(4): 1109-18.
    • Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM. (1994). Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology, 192(2): 521-9.
    • Kuiper GG, Shughrue PJ, Merchenthaler I, Gustafsson JA. (1998). The estrogen receptor beta subtype: a novel mediator of estrogen action in neuroendocrine systems. Front Neuroendocrinol, 19(4):253-86.
    • Kuiper GGJM, Carlsson B, Grandien K, Enmark E, Ha¨ggblad J, Nilsson S, Gustafsson J-Å. (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology, 138(3): 863-870.
    • LaMantia AS, Rakic P. (1990). Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci, 10(7): 2156-75.
    • Lamantia AS, Rakic P. (1990). Cytological and quantitative characteristics of four cerebral Commissures in the rhesus monkey. J Comp Neurol, 291(4): 520- 37.
    • Langub MCJ, Maley BE, Watson REJ. (1994). Estrous cycle-associated axosomatic synaptic plasticity upon estrogen receptive neurons in the rat preoptic area. Brain Res, 641(2): 303-310.
    • Laule C, Vavasour IM, Kolind SH, Li DK, Traboulsee TL, Moore GR, MacKay AL. (2007). Magnetic resonance imaging of myelin. Neurotherapeutics, 4(3): 460-844.
    • Lebel C, Walker L, Leemans A, Phillips L, & Beaulieu C. (2008). Microstructural maturation of the human brain from childhood to adulthood. Neuroimage, 40(3): 1044-1055.
    • Lee CE, Danielian LE, Thomasson D, Baker EH. (2009). Normal regional fractional anisotropy and apparent diffusion coefficient of the brain measured on a 3 T MR scanner. Neuroradiology, 51(1): 3-9.
    • Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS, Blumenthal JD, Lerch J, Zijdenbos AP, Evans AC, Thompson PM, Giedd JN. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage, 36(4): 1065-1073.
    • Leonard G, Milner B, Jones L. (1988). Performance on unimanual and bimanual tapping tasks by patients with lesions of the frontal or temporal lobe. Neuropsychologia, 26(1): 79-91.
    • Lessard N, Lepore F, Villemagne J, Lassonde M. (2002). Sound localization in callosal agenesis and early callosotomy subjects: brain reorganization and/or compensatory strategies. Brain, 125(Pt 5): 1039-53.
    • Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A, 97(8): 4398-403.
    • Mickevičienė D, Motiejūnaitė K, Karanauskienė D, Skurvydas A, Vizbaraitė D, Krutulytė G, Rimdeikienė I. (2011). Gender-dependent bimanual task performance. Medicina (Kaunas), 47(9): 497-503.
    • Miller LC, Tucker ML, Pasch L, Eccles JS. Measuring pubertal development: a comparison of different scales and different sources. http://www.rcgd.isr.umich.edu/garp/articles/eccles88g.pdf
    • Milleret C, Houzel JC. (2001). Visual interhemispheric transfer to areas 17 and 18 in cats with convergent strabismus. Eur J Neurosci, 13(1): 137-52.
    • Mueller KL, Marion SD, Paul LK, Brown WS. (2009). Bimanual motor coordination in agenesis of the corpus callosum. Behav Neurosci, 123(5): 1000-11.
    • Ota M, Obata T, Akine Y, Ito H, Ikehira H, Asada T and Suhara T, (2006). Agerelated degeneration of corpus callosum measured with diffusion tensor imaging. Neuroimage, 31(4): 1445-1452.
    • Preilowski B. (1975). Bilateral motor interaction: Perceptual motor performance of partial and complete "split brain" patients. In K. ]. Zulch, O. Creutzfeldt, & G. C. Galbraith (Eds.), Cerebral localization (pp.115-132).
    • Preis S, Jancke L, Schmitz-Hillebrecht J, Steinmetz H. (1999). Child age and planum temporale asymmetry. Brain Cogn, 40(3): 441-52.
    • Protopopescu X, Butler T, Pan H, Root J, Altemus M, Polanecsky M, McEwen B, Silbersweig D, Stern E. (2008). Hippocampal structural changes across the menstrual cycle. Hippocampus, 18(10): 985-8.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article