LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rees, Gregory J.
Languages: English
Types: Doctoral thesis
Subjects: QC
The utility of the little used Field Sweep Fourier transform (FSFT) method is\ud demonstrated for recording wideline nuclear magnetic resonance (NMR) of 195Pt resonances\ud for various sized platinum nanoparticles, as well as platinum-tin bimetallics\ud used in fuel cell catalysts, and various other related platinum (Pt3X; X = Al, Sc,\ud Nb, Ti, Hf and Zr) alloys. The lineshapes observed from PtSn for both 195Pt and\ud 119Sn suggest that it is more ordered than other closely related intermetallics, which\ud might be expected from other measurements (e.g. XRD linewidths). From these\ud reconstructed spectra the mean number of platinum atoms in the nanoparticle can\ud be accurately determined along with detailed information regarding the number of\ud atoms present effectively in each layer from the surface. This can be compared with\ud theoretical predictions of the number of platinum atoms in these various layers for\ud cubo-octahedral nanoparticles, thereby providing an estimate of the particle size. A\ud comparison of the common NMR techniques used to acquire wideline spectra from\ud spin I = 1\ud 2 nuclei shows the advantages of the automated FSFT technique over\ud the spin echo height/integration approach that dominates the literature. A study\ud of small 13 atom platinum clusters, with variable particle size dispersion for which\ud there is no experimental characterisation in the literature, provides evidence for an\ud isotropic chemical shift of these platinum nanoparticles and provides a better basis\ud for determining the Knight shift when compared to referencing against the primary\ud IUPAC standard which has a different local structure.\ud Rare earth apatite oxide ion conductors are novel candidates for electrolytes\ud in solid oxide fuel cells. It has been shown that La8Y2Ge6O27 is an excellent oxide conductor at lower temperatures when compared to the market leader yttrium stabilised\ud zirconia (YSZ). To understand the mechanism of its conduction 17O-labelled\ud water was allowed to conduct through the sample and 17O solid state NMR was\ud employed to comment on this pathway in a series of germanium and silicon subsituted\ud apatites. The linear channels running through the centre of the structure\ud were believed to contain vacancies and as with perovskites it was commonly believed\ud these allowed hopping of the oxygen to enable the apatite to conduct. It was shown\ud that a limited amount of the 17O-oxygens made it to the channel and almost all\ud of the label was located in the tetrahedra. This suggested that the mechanism of\ud conduction was via the tetrahedral backbone. Molecular dynamics studies on these\ud systems confirmed this SN2 mechanism of conduction as the excess oxygen hopped\ud onto the tetrahedral site to form a five coordinate bridging oxygen which then forced\ud a neighbouring oxygen to hop onto another tetrahedra.\ud A comparison of analytical techniques used to characterise hydrogen bonding\ud in benzoic acid and its corresponding group IA hemibenzoates indicates the need to\ud draw upon multiple methods to fully understand the nature of the bond. The X-ray\ud diffraction (XRD) data cannot confirm precisely the position of the hydrogen in the\ud complex and hence cannot comment on the nature of the bond. Traditionally the\ud angle at the central bonded proton and the oxygen-oxygen bond distance are used\ud to comment on the strength of the hydrogen bonding, the results present here show\ud the limitations of these analysis methods. Due to the oxygen-proton-oxygen bond\ud angle variations commenting on the oxygen-oxygen length and correlating it to the\ud hydrogen bonding is not feasible. There is heavy literature present on correlating\ud the 1H isotropic shifts to the hydrogen bond strength, here we show a step wise\ud change in hydrogen bonding from benzoic acid and lithium hemibenzoate down the\ud periodic table to potassium, rubidium and cesium hemibenzoate. We show that\ud the anisotropic tensor, 22, is pointed along the carbonyl bond and changes with\ud the hydrogen bonding strength. However this method of characterising the bonding\ud interaction gives a linear correlation from benzoic acid to cesium hemibenzoate. The\ud 17O MAS of the carbonyl groups show an in\ud ated quadrupole coupling constant when compared to the hydroxyls. There is a correlation between the anisotropic\ud 13C 22 parameter and the quadrupole coupling (CQ), as the 22 decreases the CQ\ud seems to give an overall increase. These oxygen results have been confirmed by\ud multiple field double rotation results. All the crystallographic and solid state NMR\ud data present is tied together by density functional theory calculations which show\ud varying degrees of agreement with the achieved results.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [117] I. J. F. Poplett and M. E. Smith. Field sweep broadline nmr spectroscopy. Solid State Nuclear Magnetic Resonance, 11:211{214, 1998.
    • [118] D. Holland, S. A. Feller, T. F. Kemp, M. E. Smith, A. P. Howes, D. Winslow, and M. Kodama. Boron-10 nmr: what extra information can it give about borate glasses? Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B, 48:1{8, 2007.
    • [119] K. J. Pike, R. P. Malde, S. E. Ashbrook, J. McManus, and S. Wimperis. Multiple-quantum mas nmr of quadrupolar nuclei. do ve-, seven- and ninequantum experiments yield higher resolution than the three-quantum experiment? Solid State Nucl. Magn. Reson., 16(3):203{215, 2000.
    • [120] A. L. Davis, G. Estcourt, J. Keeler, E. D. Laue, and J. J. Titman. Improvement of z lters and purging pulses by the use of zero-quantum dephasing in inhomogeneous b1 or b0 elds. J. Magn. Reson. Ser. A, 105(2):167{183, 1993.
    • [121] M. J. Duer. Determination of structural data from multiple-quantum magicangle spinning nmr experiments. Chem. Phys. Lett., 277(1-3):167{174, 1997.
    • [122] M. J. Duer and A. J. Painter. Correlating quadrupolar nuclear spins: A multiple-quantum nmr approach. Chem. Phys. Lett., 313(5-6):763{770, 1999.
    • [123] L. Marinelli and L. Frydman. On the origin of spinning sidebands in mqmas nmr experiments. Chem. Phys. Lett., 275(3-4):188{198, 1997.
    • [124] D. Massiot. Sensitivity and lineshape improvements of mq-mas by rotorsynchronized data acquisition. J. Magn. Reson. Ser. A, 122(2):240{244, 1996.
    • [125] S. P. Brown and S. Wimperis. Two-dimensional multiple-quantum mas nmr of quadrupolar nuclei: A comparison of methods. Journal of Magnetic Resonance, 128:42{61, 1997.
    • [126] J. D. Gehman and J. L. Provis. Generalized biaxial shearing of mqmas nmr spectra. Journal of Magnetic Resonance, 200:167{172, 2009.
    • [127] I. Hung, J. Trebosc, G. L. Hoatson, R. L. Vold, J. P. Amoureux, and Z. H. Gan. Q-shear transformation for mqmas and stmas nmr spectra. Journal of Magnetic Resonance, 201:81{86, 2009.
    • [128] J. Amoureux and M. Pruski. MQMAS Advances. John Wiley & Sons, Ltd, 2007.
    • [129] A. Samoson and E. Lippmaa. Synchronized double-rotation nmr-spectroscopy. Journal of Magnetic Resonance, 84:410{416, 1989.
    • [130] R. Dupree. Double Rotation NMR. John Wiley & Sons, Ltd, 2007.
    • [131] G. Wu, D. Rovnyak, P. C. Huang, and R. G. Gri n. High-resolution oxygen-17 nmr spectroscopy of solids by multiple-quantum magic-angle-spinning. Chemical Physics Letters, 277:79{83, 1997.
    • [132] Y. Wu, B. Q. Sun, A. Pines, A. Samoson, and E. Lippmaa. Nmr experiments with a new double rotor. Journal of Magnetic Resonance, 89:297{309, 1990.
    • [133] A. P. Howes, T. Anupold, V. Lemaitre, A. Kukol, A. Watts, A. Samoson, M. E. Smith, and R. Dupree. Enhancing resolution and sensitivity of o-17 solidstate nmr through combining double rotation, h-1 decoupling and satellite modulation for biomolecular applications. Chemical Physics Letters, 421:42{ 46, 2006.
    • [134] W. Kohn. Nobel lecture: Electronic structure of matter-wave functions and density functionals. Reviews of Modern Physics, 71:1253{1266, 1999.
    • [135] W. Kohn. Electronic structure of matter: Wave functions and density functionals. Chimia, 54:50{50, 2000.
    • [136] S. A. Joyce, J. R. Yates, C. J. Pickard, and F. Mauri. A rst principles theory of nuclear magnetic resonance j-coupling in solid-state systems. J. Chem. Phys., 127(20):204107, 2007.
    • [137] J. D. Jackson. Classical electrodynamics. Wiley, New York ; Chichester, 3rd ed. edition, 1999. GB9900319 bnb 2521 John David Jackson. ill. ; 26 cm. Previous ed.: 1975. Includes bibliographical references (p. 785-790) and index.
    • [138] C. J. Pickard and F. Mauri. All-electron magnetic response with pseudopotentials: Nmr chemical shifts. Physical Review B, 63, 2001.
    • [139] T. Gregor, F. Mauri, and R. Car. A comparison of methods for the calculation of nmr chemical shifts. Journal of Chemical Physics, 111:1815{1822, 1999.
    • [140] M. Profeta, F. Mauri, and C. J. Pickard. Accurate rst principles prediction of o-17 nmr parameters in sio2: Assignment of the zeolite ferrierite spectrum. Journal of the American Chemical Society, 125:541{548, 2003.
    • [141] J. R. Yates, C. J. Pickard, M. C. Payne, and F. Mauri. Relativistic nuclear magnetic resonance chemical shifts of heavy nuclei with pseudopotentials and the zeroth-order regular approximation. Journal of Chemical Physics, 118:5746{5753, 2003.
    • [142] R. Dillon, S. Srinivasan, A. S. Arico, and V. Antonucci. International activities in dmfc r&d: status of technologies and potential applications. Journal of Power Sources, 127:112{126, 2004.
    • [143] A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno, and H. Ohuchi. Performance of platinum-group metal-catalysts for the selective reduction of nitrogen-oxides by hydrocarbons. Applied Catalysis B-Environmental, 2:71{ 80, 1993.
    • [144] V. Mehta and J. S. Cooper. Review and analysis of pem fuel cell design and manufacturing. Journal of Power Sources, 114:32{53, 2003.
    • [145] D. Astruc. Nanoparticles and catalysis. Wiley-VCH, Weinheim, 2008.
    • [146] P. K. Babu, H. S. Kim, S. T. Kuk, J. H. Chung, E. Old eld, A. Wieckowski, and E. S. Smotkin. Activation of nanoparticle pt-ru fuel cell catalysts by heat treatment: A pt-195 nmr and electrochemical study. Journal of Physical Chemistry B, 109:17192{17196, 2005.
    • [147] P. K. Babu, H. S. Kim, E. Old eld, and A. Wieckowski. Electronic alterations caused by ruthenium in pt-ru alloy nanoparticles as revealed by electrochemical nmr. Journal of Physical Chemistry B, 107:7595{7600, 2003.
    • [148] P. K. Babu, H. S. Kim, A. Wieckowski, and E. Old eld. Electrochemical nmr study of co adsorbed on pt nanoparticles decorated with pd. Abstracts of Papers of the American Chemical Society, 227:U835{U835, 2004.
    • [149] T. Kobayashi, P. K. Babu, J. H. Chung, E. Old eld, and A. Wieckowski. Coverage dependence of co surface di usion on pt nanoparticles: An ec-nmr study. Journal of Physical Chemistry C, 111:7078{7083, 2007.
    • [150] K. Franaszczuk, J. Wu, A. Wieckowski, B. Montez, and E. Old eld. Solidstate nmr measurements of cyanides on powdered pt electrodes. Abstracts of Papers of the American Chemical Society, 206:44{Phys, 1993.
    • [151] Y. Y. Tong, C. Belrose, A. Wieckowski, and E. Old eld. First observation of platinum-195 nuclear magnetic resonance in commercial graphite-supported platinum electrodes in an electrochemical environment. Journal of the American Chemical Society, 119:11709{11710, 1997.
    • [152] J. J. Wu, J. B. Day, K. Franaszczuk, B. Montez, E. Old eld, A. Wieckowski, P. A. Vuissoz, and J. P. Ansermet. Recent progress in surface nmrelectrochemistry. Journal of the Chemical Society-Faraday Transactions, 93:1017{1026, 1997.
    • [153] A. V. Ivanov, I. A. Lutsenko, M. A. Ivanov, A. V. Gerasimenko, and O. N. Antzutkin. Synthesis, structural and multinuclear natural abundance (c-13, p-31, pt-195) cp/mas nmr studies of crystalline o,o '-dialkyldithiophosphate platinum(ii) complexes. Russian Journal of Coordination Chemistry, 34:584{ 593, 2008.
    • [154] A. V. Ivanov, V. I. Palazhchenko, V. E. Strikha, O. N. Antzutkin, and W. Forsling. Structural features and nmr pt-195 spectroscopy of cooperite monocrystals (natural pts). Doklady Earth Sciences, 410:1141{1144, 2006.
    • [155] R. K. Brow, R. J. Kirkpatrick, and G. L. Turner. The short-range structure of sodium-phosphate glasses .1. mas nmr-studies. Journal of Non-Crystalline Solids, 116:39{45, 1990.
    • [156] H. E. Rhodes, P. K. Wang, C. D. Makowka, S. L. Rudaz, H. T. Stokes, C. P. Slichter, and J. H. Sinfelt. Nmr of platinum catalysts .2. relaxation. Physical Review B, 26:3569{3574, 1982.
    • [157] H. E. Rhodes, P. K. Wang, H. T. Stokes, C. P. Slichter, and J. H. Sinfelt. Nmr of platinum catalysts .1. line-shapes. Physical Review B, 26:3559{3568, 1982.
    • [158] H. T. Stokes, H. E. Rhodes, P. K. Wang, C. P. Slichter, and J. H. Sinfelt. Nmr of platinum catalysts .3. microscopic variation of the knight-shifts. Physical Review B, 26:3575{3581, 1982.
    • [159] Y. Y. Tong, A. Wieckowski, and E. Old eld. Nmr of electrocatalysts. Journal of Physical Chemistry B, 106:2434{2446, 2002.
    • [160] Y. Y. Tong, H. S. Kim, P. K. Babu, P. Waszczuk, A. Wieckowski, and E. Oldeld. An nmr investigation of co tolerance in a pt/ru fuel cell catalyst. Journal of the American Chemical Society, 124:468{473, 2002.
    • [161] Y. Y. Tong, E. Old eld, and A. Wieckowski. Di usion on a nanoparticle surface as revealed by electrochemical nmr. Faraday Discussions, 121:323{ 330, 2002.
    • [162] Y. Y. Tong, C. Rice, N. Godbout, A. Wieckowski, and E. Old eld. Correlation between the knight shift of chemisorbed co and the fermi level local density of states at clean platinum catalyst surfaces. Journal of the American Chemical Society, 121:2996{3003, 1999.
    • [163] M. M. P. Janssen and J. Moolhuysen. Platinum-tin catalysts for methanol fuelcells prepared by a novel immersion technique, by electrocodeposition and by alloying. Electrochimica Acta, 21:861{868, 1976.
    • [164] A. Marteel, J. A. Davies, M. R. Mason, T. Tack, S. Bektesevic, and M. A. Abraham. Supported platinum/tin complexes as catalysts for hydroformylation of 1-hexene in supercritical carbon dioxide. Catalysis Communications, 4:309{314, 2003.
    • [165] D. E. Nikles, Z. Liu, D. Reed, G. Kwon, and M. Shamsuzzoha. Pt(3)sn nanoparticles with controlled size: High-temperature synthesis and roomtemperature catalytic activation for electrochemical methanol oxidation. Journal of Physical Chemistry C, 111:14223{14229, 2007.
    • [166] F. Caruso, C. Di Nicola, J. V. Hanna, F. Marchetti, C. Pettinari, R. Pettinari, M. Rossi, G. J. Rees, B. W. Skelton, and A. H. White. Novel bis(betadiketonato)diorganotin(iv) derivatives containing bulky 4-acyl-5-pyrazolonato ligands: In uence of the steric hindrance of the acyl moiety on the solid state structures of tin complexes and their behaviour in solution. Inorganica Chimica Acta, 367:73{84, 2011.
    • [167] T. H. Chang, C. P. Cheng, and C. T. Yeh. Sn-119 nmr-studies on alloying silica supported tin with nickel and palladium. Materials Chemistry and Physics, 22:503{510, 1989.
    • [168] J. P. Bucher, J. Buttet, J. J. Vanderklink, M. Graetzel, E. Newson, and T. B. Truong. Pt-195 nmr-studies of supported catalysts. Colloids and Surfaces, 36:155{167, 1989.
    • [169] J. P. Bucher, J. J. Vanderklink, J. Buttet, and M. Graetzel. Study and classi cation of platinum catalysts by nmr. Helvetica Physica Acta, 58:791{791, 1985.
    • [170] Z. L. Wang. Characterization of nanophase materials. Wiley-VCH, Weinheim ; Chichester, 2000. GB 99-V7609 edited by Zhong Lin Wang. ill. ; 25 cm. Includes bibliographical references and index.
    • [171] P. S. Pregosin. Platinum-195 nuclear magnetic resonance. Coordination Chemistry Reviews, 44:247 { 291, 1982.
    • [172] T. J. Bastow, M. E. Smith, and S. N. Stuart. Observation of zr-91 nmr in zirconium-based metals and oxides. Chemical Physics Letters, 191:125{129, 1992.
    • [173] R. P. Messmer, S. K. Knudson, K. H. Johnson, J. B. Diamond, and C. Y. Yang. Molecular-orbital studies of transition-metal and noble-metal clusters by self-consistent- eld chialpha scattered-wave method. Physical Review B, 13:1396{1415, 1976.
    • [174] B. J. Pronk, H. B. Brom, A. Ceriotti, and G. Longoni. Physical-properties of metal cluster compounds-iii - nmr-study of platinum carbonyl clusters. Solid State Communications, 64:7{10, 1987.
    • [175] G. A. Cooper S. J. Buchanan, J. S. Hards. Catalyst material comprising platinum alloy supported on carbon, September 1991.
    • [176] F. Wen, H. Bonnemann, R. J. Mynott, B. Splietho , C. Weidenthaler, N. Palina, S. Zinoveva, and H. Modrow. Preparation of pt-13 clusters in the presence of trialkylaluminium. Applied Organometallic Chemistry, 19:827{829, 2005.
    • [177] William Hart Hayt and John A. Buck. Engineering electromagnetics. McGrawHill, New York, 8th int. ed. edition, 2012.
    • [178] M. J. Woodman. The thermal conductivity and electrical resistivity of platinum. Platinum Metals Rev., 10:132, 1966.
    • [179] J. Kummerlen, A. Sebald, and H. Reuter. The structure of ((iso-bu)3n)2co3 and (me3sn)2co3 in solution and in the solid-state studied by c-13/sn-119 nmr-spectroscopy and x-ray-di raction. Journal of Organometallic Chemistry, 427:309{323, 1992.
    • [180] L. E. Barret. Investigation into industrially viable catalytic materials using solid state nuclear magnetic resonance. PhD thesis, University of Warwick, 2006.
    • [181] S. T. Orr. Multinuclear Solid-State NMR of Fuel Cell Materials. PhD thesis, Univeristy of Warwick, 2010.
    • [182] T. J. Bastow, M. A. Gibson, and C. T. Forwood. Ti-47,ti-49 nmr: hyper ne interactions in oxides and metals. Solid State Nuclear Magnetic Resonance, 12:201{209, 1998.
    • [183] A. F. Lee, K. Wilson, and R. M. Lambert. Structure and stability of the platinum/aluminium interface: alloying and substrate vacancy formation on pt111/al. Surface Science, 446:145{152, 2000.
    • [184] M. E. Smith, M. A. Gibson, C. T. Forwood, and T. J. Bastow. Detection of phase and antisite structure of ti-al alloys by al-27 solid state nuclear magnetic resonance. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 74:791{809, 1996.
    • [185] W. Bronger, P. Muller, and K. Wrzesien. The structure of platinum-rich aluminium/platinum alloys. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 623:362{368, 1997.
    • [186] E. Kendrick, D. Headspith, A. Orera, D. C. Apperley, R. I. Smith, M. G. Francesconi, and P. R. Slater. An investigation of the high temperature reaction between the apatite oxide ion conductor la9.33si6o26 and nh3. Journal of Materials Chemistry, 19:749{754, 2009.
    • [187] E. Kendrick, M. S. Islam, and P. R. Slater. Atomic-scale mechanistic features of oxide ion conduction in apatite-type germanates. Chemical Communications, pages 715{717, 2008.
    • [188] E. Kendrick, M. S. Islam, and P. R. Slater. Investigation of the structural changes on zn doping in the apatite-type oxide ion conductor la9.33si6o26: A combined neutron di raction and atomistic simulation study. Solid State Ionics, 177:3411{3416, 2007.
    • [189] E. Kendrick, M. S. Islam, and P. R. Slater. Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties. Journal of Materials Chemistry, 17:3104{3111, 2007.
    • [190] E. Kendrick, K. S. Knight, M. S. Islam, and P. R. Slater. Combined experimental and modelling studies of proton conducting la1-xba1+xgao4-x/2: proton location and dopant site selectivity. Journal of Materials Chemistry, 20:10412{10416, 2010.
    • [191] E. Kendrick, A. Orera, and P. R. Slater. Neutron di raction structural study of the apatite-type oxide ion conductor, la8y2ge6o27: location of the interstitial oxide ion site. Journal of Materials Chemistry, 19:7955{7958, 2009.
    • [192] E. Kendrick and P. R. Slater. Investigation of the in uence of oxygen content on the conductivities of ba doped lanthanum germanate apatites. Solid State Ionics, 179:981{984, 2008.
    • [193] L. Leon-Reina, E. R. Losilla, M. Martinez-Lara, S. Bruque, and M. A. G. Aranda. Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes. Journal of Materials Chemistry, 14:1142{1149, 2004.
    • [194] L. Leon-Reina, E. R. Losilla, M. Martinez-Lara, S. Bruque, A. Llobet, D. V. Sheptyakov, and M. A. G. Aranda. Interstitial oxygen in oxygen-stoichiometric apatites. Journal of Materials Chemistry, 15:2489{2498, 2005.
    • [195] L. Leon-Reina, E. R. Losilla, M. Martinez-Lara, M. C. Martin-Sedeno, S. Bruque, P. Nunez, D. V. Sheptyakov, and M. A. G. Aranda. High oxide ion conductivity in al-doped germanium oxyapatite. Chemistry of Materials, 17:596{600, 2005.
    • [196] L. Leon-Reina, J. M. Porras-Vazquez, E. R. Losilla, and M. A. G. Aranda. Phase transition and mixed oxide-proton conductivity in germanium oxyapatites. Journal of Solid State Chemistry, 180:1250{1258, 2007.
    • [197] A. Orera, E. Kendrick, D. C. Apperley, V. M. Orera, and P. R. Slater. E ect of oxygen content on the si-29 nmr, raman spectra and oxide ion conductivity of the apatite series, la8+xsr2-x(sio4)(6)o2+x/2. Dalton Transactions, pages 5296{5301, 2008.
    • [198] A. Orera and P. R. Slater. Water incorporation studies in apatite-type rare earth silicates/germanates. Solid State Ionics, 181:110{114, 2010.
    • [199] J. R. Tolchard, M. S. Islam, and P. R. Slater. Insight into doping e ects in apatite silicate ionic conductors. Advanced Functional Materials, 17:2564{ 2571, 2007.
    • [200] L. Malavasi, A. Orera, P. R. Slater, P. M. Panchmatia, M. S. Islam, and J. Siewenie. Local structure investigation of oxide ion and proton defects in ge-apatites by pair distribution function analysis. Chemical Communications, 47:250{252, 2010.
    • [201] P. M. Panchmatia, A. Orera, E. Kendrick, J. V. Hanna, M. E. Smith, P. R. Slater, and M. S. Islam. Protonic defects and water incorporation in si and gebased apatite ionic conductors. Journal of Materials Chemistry, 20:2766{2772, 2010.
    • [202] S. S. Pramana, W. T. Klooster, and T. J. White. A taxonomy of apatite frameworks for the crystal chemical design of fuel cell electrolytes. Journal of Solid State Chemistry, 181:1717{1722, 2008.
    • [203] S. S. Pramana, W. T. Klooster, and T. J. White. Framework 'interstitial' oxygen in la-10(geo4)(5)-(geo5)o-2 apatite electrolyte. Acta Crystallographica Section B-Structural Science, 63:597{602, 2007.
    • [204] J. E. H. Sansom and P. R. Slater. Oxide ion conductivity in the mixed si/ge apatite-type phases lag(9.33)si(6-x)ge(x)o(26). Solid State Ionics, 167:23{27, 2004.
    • [205] J. E. H. Sansom, J. R. Tolchard, M. S. Islam, D. Apperley, and P. R. Slater. Solid state si-29 nmr studies of apatite-type oxide ion conductors. Journal of Materials Chemistry, 16:1410{1413, 2006.
    • [206] I. Hung, A. C. Uldry, J. Becker-Baldus, A. L. Webber, A. Wong, M. E. Smith, S. A. Joyce, J. R. Yates, C. J. Pickard, R. Dupree, and S. P. Brown. Probing heteronuclear n-15-o-17 and c-13-o-17 connectivities and proximities by solidstate nmr spectroscopy. Journal of the American Chemical Society, 131:1820{ 1834, 2009.
    • [207] A. Wong, A. P. Howes, B. Parkinson, T. Anupold, A. Samoson, D. Holland, and R. Dupree. High-resolution (17)o double-rotation nmr characterization of ring and non-ring oxygen in vitreous b(2)o(3). Physical Chemistry Chemical Physics, 11:7061{7068, 2009.
    • [208] A. Wong, A. P. Howes, K. J. Pike, V. Lemaitre, A. Watts, T. Anupold, J. Past, A. Samoson, R. Dupree, and M. E. Smith. New limits for solid-state o-17 nmr spectroscopy: Complete resolution of multiple oxygen sites in a simple biomolecule. Journal of the American Chemical Society, 128:7744{7745, 2006.
    • [209] A. Wong, I. Hung, A. P. Howes, T. Anupold, J. Past, A. Samoson, S. P. Brown, M. E. Smith, and R. Dupree. The determination of o-17 nmr parameters of hydroxyl oxygen: A combined deuteration and dor approach. Magnetic Resonance in Chemistry, 45:S68{S72, 2007.
    • [210] A. Wong, K. J. Pike, R. Jenkins, G. J. Clarkson, T. Anupold, A. P. Howes, D. H. G. Crout, A. Samoson, R. Dupree, and M. E. Smith. Experimental and theoretical o-17 nmr study of the in uence of hydrogen-bonding on c=o and o-h oxygens in carboxylic solids. Journal of Physical Chemistry A, 110:1824{ 1835, 2006.
    • [211] T. Anupold, A. Reinhold, P. Sarv, and A. Samoson. A comparison of double rotation and multi-quantum magic angle spinning spectra. Solid State Nuclear Magnetic Resonance, 13:87{91, 1998.
    • [212] W. Smith, C.W. Yong, and P.M. Rodger. Dl poly: Application to molecular simulation. Molecular Simulation, 28:385{471, 2002.
    • [213] G. Kresse and J. Furthmuller. E cient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B, 54:11169{ 11186, 1996.
    • [214] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne. First principles methods using castep. Zeitschrift Fur Kristallographie, 220:567{570, 2005.
    • [215] K. Momma and F. Izumi. Vesta: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41:653{ 658, 2008.
    • [216] Alexey A. S.and Walsh A. and C. R. A. Catlow. Oxygen interstitial structures in close-packed metal oxides. Chemical Physics Letters, 492:44 { 48, 2010.
    • [217] M. S. Islam, J. R. Tolchard, and P. R. Slater. An apatite for fast oxide ion conduction. Chemical Communications, pages 1486{1487, 2003.
    • [218] A. Jones, P. R. Slater, and M. S. Islam. Local defect structures and ion transport mechanisms in the oxygen-excess apatite la-9.67(sio4)(6)o-2.5. Chemistry of Materials, 20:5055{5060, 2008.
    • [219] M. Magi, E. Lippmaa, A. Samoson, G. Engelhardt, and A. R. Grimmer. Solidstate high-resolution si-29 chemical-shifts in silicates. Journal of Physical Chemistry, 88:1518{1522, 1984.
    • [220] P. Gillespie, G. Wu, M. Sayer, and M. J. Stott. Si complexes in calcium phosphate biomaterials. Journal of Materials Science-Materials in Medicine, 21:99{108, 2010.
    • [221] M. L. Occelli, H. Eckert, A. Wolker, and A. Auroux. Crystalline galliosilicate molecular sieves with the beta structure. Microporous and Mesoporous Materials, 30:219{232, 1999.
    • [222] T. J. Bastow and S. N. Stuart. O-17 nmr in simple oxides. Chemical Physics, 143:459{467, 1990.
    • [223] R. Hussin, R. Dupree, and D. Holland. The ge-o-ge bond angle distribution in geo2 glass: a nmr determination. Journal of Non-Crystalline Solids, 246:159{ 168, 1999.
    • [224] T. J. Bastow, P. J. Dirken, M. E. Smith, and H. J. Whit eld. Factors controlling the o-17 nmr chemical shift in ionic mixed metal oxides. Journal of Physical Chemistry, 100:18539{18545, 1996.
    • [225] B. C. Bunker, C. H. F. Peden, R. J. Kirkpatrick, and G. L. Turner. O-17 nmr studies of titanate repolymerization in water. Aqueous Chemistry and Geochemistry of Oxides, Oxyhydroxides, and Related Materials, 432:39{43, 1997.
    • [226] Y. Millot and P. P. Man. Procedures for labeling the high-resolution axis of two-dimensional mq-mas nmr spectra of half-integer quadrupole spins. Solid State Nuclear Magnetic Resonance, 21:21{43, 2002.
    • [227] H. Eckert, J. P. Yesinowski, L. A. Silver, and E. M. Stolper. Water in silicateglasses - quantitation and structural studies by h-1 solid echo and mas-nmr methods. Journal of Physical Chemistry, 92:2055{2064, 1988.
    • [228] H. Eckert, J. P. Yesinowski, and E. M. Stolper. Quantitative nmr-studies of water in silicate-glasses. Solid State Ionics, 32-3:298{313, 1989.
    • [229] J. P. Yesinowski and H. Eckert. Hydrogen environments in calcium phosphates - h-1 mas nmr at high spinning speeds. Journal of the American Chemical Society, 109:6274{6282, 1987.
    • [230] J. P. Yesinowski, H. Eckert, and G. R. Rossman. Characterization of hydrous species in minerals by high-speed h-1 mas nmr. Journal of the American Chemical Society, 110:1367{1375, 1988.
    • [231] I. Schnell, A. Watts, and H. W. Spiess. Double-quantum double-quantum mas exchange nmr spectroscopy: Dipolar-coupled spin pairs as probes for slow molecular dynamics. Journal of Magnetic Resonance, 149:90{102, 2001.
    • [232] N. Asakawa, S. Kuroki, H. Kurosu, I. Ando, A. Shoji, and T. Ozaki. Hydrogenbonding e ect on c-13 nmr chemical-shifts of l-alanine residue carbonyl carbons of peptides in the solid-state. Journal of the American Chemical Society, 114:3261{3265, 1992.
    • [233] C. M. Gowda, F. Vasconcelos, E. Schwartz, E. R. H. van Eck, M. Marsman, J. J. L. M. Cornelissen, A. E. Rowan, G. A. de Wijs, and A. P. M. Kentgens. Hydrogen bonding and chemical shift assignments in carbazole functionalized isocyanides from solid-state nmr and rst-principles calculations. Physical Chemistry Chemical Physics, 13:13082{13095, 2011.
    • [234] Z. T. Gu, C. F. Ridenour, C. E. Bronnimann, T. Iwashita, and A. McDermott. Hydrogen bonding and distance studies of amino acids and peptides using solid state 2d h-1-c-13 heteronuclear correlation spectra. Journal of the American Chemical Society, 118:822{829, 1996.
    • [235] Z. T. Gu, R. Zambrano, and A. Mcdermott. Hydrogen-bonding of carboxyl groups in solid-state amino-acids and peptides - comparison of carbon chemical shielding, infrared frequencies, and structures. Journal of the American Chemical Society, 116:6368{6372, 1994.
    • [236] S. Kuroki, S. Ando, I. Ando, A. Shoji, T. Ozaki, and G. A. Webb. Hydrogen-bonding e ect on n-15 nmr chemical-shifts of the glycine residue of oligopeptides in the solid-state as studied by high-resolution solid-state nmr-spectroscopy. Journal of Molecular Structure, 240:19{29, 1990.
    • [237] J. W. Traer, J. F. Britten, and G. R. Goward. A solid-state nmr study of hydrogen-bonding networks and ion dynamics in benzimidazole salts. Journal of Physical Chemistry B, 111:5602{5609, 2007.
    • [238] G. A. Je rey. An introduction to hydrogen bonding. Oxford University Press, New York ; Oxford, 1997.
    • [239] G. A. Je rey and W. Saenger. Hydrogen bonding in biological structures. Springer, Berlin, 1991.
    • [240] J. Sponer, J. Leszczynski, and P. Hobza. Hydrogen bonding and stacking of dna bases: A review of quantum-chemical ab initio studies. Journal of Biomolecular Structure & Dynamics, 14:117{135, 1996.
    • [241] J. M. Cole, G. J. McIntyre, M. S. Lehmann, D. A. A. Myles, C. Wilkinson, and J. A. K. Howard. Rapid neutron-di raction data collection for hydrogenbonding studies: application of the laue di ractometer (ladi) to the case study zinc (tris)thiourea sulfate. Acta Crystallographica Section A, 57:429{434, 2001.
    • [242] G. Gemmecker. Direct detection of hydrogen bonds in biopolymers by nmr spectroscopy. Angewandte Chemie-International Edition, 39:1224{+, 2000.
    • [243] B. Slootmaekers and H. O. Desseyn. Characterization of intermolecular and intramolecular hydrogen-bonding in the solid-state using variable-temperature ir spectroscopy. Applied Spectroscopy, 45:118{120, 1991.
    • [244] A. K. Cheetham and A. P. Wilkinson. Synchrotron x-ray and neutrondi raction studies in solid-state chemistry. Angewandte Chemie-International Edition in English, 31:1557{1570, 1992.
    • [245] A. Wong, I. Hung, A. P. Howes, T. Anupold, J. Past, A. Samoson, S. P. Brown, M. E. Smith, and R. Dupree. The determination of o-17 nmr parameters of hydroxyl oxygen: A combined deuteration and dor approach. Magnetic Resonance in Chemistry, 45:S68{S72, 2007.
    • [246] S. Schramm, R. J. Kirkpatrick, and E. Old eld. Observation of high-resolution o-17 nmr-spectra of inorganic solids. Journal of the American Chemical Society, 105:2483{2485, 1983.
    • [247] D. L. Pechkis, E. J. Walter, and H. Krakauer. High sensitivity of (17)o nmr to p-d hybridization in transition metal perovskites: First principles calculations of large anisotropic chemical shielding. Journal of Chemical Physics, 131, 2009.
    • [248] E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, and D. J. Nesbitt. De nition of the hydrogen bond (iupac recommendations 2011). Pure and Applied Chemistry, 83:1637{1641, 2011.
    • [249] G. R. Desiraju. Re ections on the hydrogen bond in crystal engineering. Crystal Growth & Design, 11:896{898, 2011.
    • [250] G. R. Desiraju. A bond by any other name. Angewandte Chemie-International Edition, 50:52{59, 2011.
    • [251] R. K. Harris, P. Jackson, L. H. Merwin, B. J. Say, and G. Hagele. Perspectives in high-resolution solid-state nuclear magnetic-resonance, with emphasis on combined rotation and multiple-pulse spectroscopy. Journal of the Chemical Society-Faraday Transactions I, 84:3649{3672, 1988.
    • [252] R. Gobetto, C. Nervi, E. Valfre, M. R. Chierotti, D. Braga, L. Maini, F. Grepioni, R. K. Harris, and P. Y. Ghi. (1)h mas, (15)n cpmas, and dft investigation of hydrogen-bonded supramolecular adducts between the diamine 1,4-diazabicyclo-[2.2.2]octane and dicarboxylic acids of variable chain length. Chemistry of Materials, 17:1457{1466, 2005.
    • [253] Z. T. Gu and A. Mcdermott. Chemical shielding anisotropy of protonated and deprotonated carboxylates in amino-acids. Journal of the American Chemical Society, 115:4282{4285, 1993.
    • [254] A. Wong, K. J. Pike, R. Jenkins, G. J. Clarkson, T. Anupold, A. P. Howes, D. H. G. Crout, A. Samoson, R. Dupree, and M. E. Smith. Experimental and theoretical o-17 nmr study of the in uence of hydrogen-bonding on c=o and o-h oxygens in carboxylic solids. Journal of Physical Chemistry A, 110:1824{ 1835, 2006.
    • [255] G. Wu. Solid-state o-17 nmr studies of organic and biological molecules. Progress in Nuclear Magnetic Resonance Spectroscopy, 52:118{169, 2008.
    • [256] G. Wu, D. Rovnyak, P. C. Huang, and R. G. Gri n. High-resolution oxygen-17 nmr spectroscopy of solids by multiple-quantum magic-angle-spinning. Chemical Physics Letters, 277:79{83, 1997.
    • [258] O. Neumuller, H. Rompp, and E. Uhlein. Rompps Chemie-Lexicon. Franckh, Stuttgart,, 1972.
    • [259] G. A. Sim, J. M. Robertson, and T. H. Goodwin. The crystal and molecular structure of benzoic acid. Acta Crystallographica, 8:157{164, 1955.
    • [260] A. J. Horsewill. Quantum tunnelling in the hydrogen bond. Progress in Nuclear Magnetic Resonance Spectroscopy, 52:170{196, 2008.
    • [261] J. C. Speakman. The hydrogen bond and other intermolecular forces. Monographs for teachers. Chemical Society, London, 1975.
    • [262] L. J. Barbour. X-seed a software tool for supramolecular crystallography. Journal of Supramolecular Chemistry, 1:189{191, 2001.
    • [263] G. M. Sheldrick. A short history of shelx. Acta Crystallographica Section A, 64:112{122, 2008.
    • [264] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, and J. van De Streek. Mercury: visualization and analysis of crystal structures. Journal of Applied Crystallography, 39:453{457, 2006.
    • [265] R. K. Harris, E. D. Becker, S. M. C. de Menezes, R. Goodfellow, and P. Granger. Nmr nomenclature: Nuclear spin properties and conventions for chemical shifts - iupac recommendations 2001 (reprinted from pure appl. chem, vol 73, pg 1795-1818, 2001). Solid State Nuclear Magnetic Resonance, 22:458{483, 2002.
    • [266] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, J. O. Durand, B. Bujoli, Z. H. Gan, and G. Hoatson. Modelling one- and twodimensional solid-state nmr spectra. Magnetic Resonance in Chemistry, 40:70{ 76, 2002.
    • [267] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais. Atoms, molecules, solids, and surfaces - applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46:6671{6687, 1992.
    • [268] C. J. Pickard and F. Mauri. All-electron magnetic response with pseudopotentials: Nmr chemical shifts. Physical Review B, 63, 2001.
    • [269] J. R. Yates, C. J. Pickard, and F. Mauri. Calculation of nmr chemical shifts for extended systems using ultrasoft pseudopotentials. Physical Review B, 76, 2007.
    • [270] R. Destro, R. Soave, and M. Barzaghi. Physicochemical properties of zwitterionic l- and dl-alanine crystals from their experimental and theoretical charge densities. Journal of Physical Chemistry B, 112:5163{5174, 2008.
    • [271] D. A. Fletcher, R. F. McMeeking, and D. Parkin. The united kingdom chemical database service. Journal of Chemical Information and Computer Sciences, 36:746{749, 1996.
    • [272] C. C. Wilson, N. Shankland, and A. J. Florence. A single-crystal neutron di raction study of the temperature dependence of hydrogen-atom disorder in benzoic acid dimers. Journal of the Chemical Society-Faraday Transactions, 92:5051{5057, 1996.
    • [273] H. J. Flammersheim. Physicochemical studies on systems of sodium benzoate and benzoic-acid .2. phase behavior of system sodium benzoate benzoic acid. Journal of Thermal Analysis, 7:571{585, 1975.
    • [276] C. J. Gorter. Bad luck in attempts. Physics Today, 20:76, 1967.
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    2co3Protein Data Bank

Share - Bookmark

Cite this article