LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Croal, Paula L.; Hall, Emma L.; Driver, Ian D.; Brookes, Matthew Jon; Gowland, Penny A.; Francis, Susan T. (2015)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: respiratory tract diseases, respiratory system, cardiovascular system, sense organs
The physiological effect of hyperoxia has been poorly characterised, with studies reporting conflicting results on the role of hyperoxia as a vasoconstrictor. It is not clear whether hyperoxia is the primary contributor to vasoconstriction or whether induced changes in CO2 that commonly accompany hyperoxia are a factor. As calibrated BOLD fMRI based on hyperoxia becomes more widely used, it is essential to understand the effects of oxygen on resting cerebral physiology. This study used a RespirActTM system to deliver a repeatable isocapnic hyperoxia stimulus to investigate the independent effect of O2 on cerebral physiology, removing any potential confounds related to altered CO2. T1-independent Phase Contrast MRI was used to demonstrate that isocapnic hyperoxia has no significant effect on carotid blood flow (normoxia 201 ± 11 ml/min, -0.3 ± 0.8 % change during hyperoxia, p = 0.8), whilst Look Locker ASL was used to demonstrate that there is no significant change in arterial cerebral blood volume (normoxia 1.3 ± 0.4 %, -0.5 ± 5 % change during hyperoxia). These are in contrast to significant changes in blood flow observed for hypercapnia (6.8 ± 1.5 %/mmHg CO2). In addition, magnetoencephalography provided a method to monitor the effect of isocapnic hyperoxia on neuronal oscillatory power. In response to hyperoxia, a significant focal decrease in oscillatory power was observed across the alpha, beta and low gamma bands in the occipital lobe, compared to a more global significant decrease on hypercapnia. This work suggests that isocapnic hyperoxia provides a more reliable stimulus than hypercapnia for calibrated BOLD, and that previous reports of vasoconstriction during hyperoxia probably reflect the effects of hyperoxia-induced changes in CO2. However, hyperoxia does induce changes in oscillatory power consistent with an increase in vigilance, but these changes are smaller than those observed under hypercapnia. The effect of this change in neural activity on calibrated BOLD using hyperoxia or combined hyperoxia and hypercapnia needs further investigation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Attwell, D. & Laughlin, S. B. 2001. An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow & Metabolism, 21, 1133-1145.
    • Becker, H. F., Polo, O., McNamara, S. G., Berthon-Jones, M. & Sullivan, C. E. 1996. Effect of different levels of hyperoxia on breathing in healthy subjects. Journal of Applied Physiology, 81, 1683-1690.
    • Berger, H. 1929. Ãoeber das elektrenkephalogramm des menschen. European Archives of Psychiatry and Clinical Neuroscience, 87, 527-570.
    • Blockley, N., Driver, I., Fisher, J., Francis, S. & Gowland, P. 2012. Measuring venous blood volume changes during activation using hyperoxia. Neuroimage, 59, 3266-3274.
    • Boyajian, R. A., Schwend, R. B., Wolfe, M. M., Bickerton, R. E. & Otis, S. M. 1995. Measurement of anterior and posterior circulation flow contributions to cerebral blood flow. An ultrasound-derived volumetric flow analysis. Journal of neuroimaging: official journal of the American Society of Neuroimaging, 5, 1-3.
    • Bray, J. J. 1999. Lecture notes on human physiology, Wiley-Blackwell.
    • Brookes, M. J., Gibson, A. M., Hall, S. D., Furlong, P. L., Barnes, G. R., Hillebrand, A., Singh, K. D., Holliday, I. E., Francis, S. T. & Morris, P. G. 2004. A general linear model for MEG beamformer imaging. Neuroimage, 23, 936-946.
    • Brookes, M. J., Gibson, A. M., Hall, S. D., Furlong, P. L., Barnes, G. R., Hillebrand, A., Singh, K. D., Holliday, I. E., Francis, S. T. & Morris, P. G. 2005. GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex. Neuroimage, 26, 302-308.
    • Brookes, M. J., Morris, P. G., Gowland, P. A. & Francis, S. T. 2007. Noninvasive Measurement of Arterial Cerebral Blood Volume Using Look-Locker EPI and Arterial Spin Labeling. Mag. Res. Med., 58, 41-54.
    • Brookes, M. J., Vrba, J., Robinson, S. E., Stevenson, C. M., Peters, A. M., Barnes, G. R., Hillebrand, A. & Morris, P. G. 2008. Optimising experimental design for MEG beamformer imaging. Neuroimage, 39, 1788-1802.
    • Brookes, M. J., Wood, J. R., Stevenson, C. M., Zumer, J. M., White, T. P., Liddle, P. F. & Morris, P. G. 2010. Changes in brain network activity during working memory tasks: a magnetoencephalography study. Neuroimage, 55, 1804-1815.
    • Bulte, D., Chiarelli, P., Wise, R. & Jezzard, P. 2007a. Measurement of cerebral blood volume in humans using hyperoxic MRI contrast. Journal of Magnetic Resonance Imaging, 26, 894-899.
    • Bulte, D., Kelly, M., Germuska, M., Xie, J., Chappell, M., Okell, T., Bright, M. & Jezzard, P. 2012. Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage, 60, 582-591.
    • Bulte, D. P., Chiarelli, P. A., Wise, R. G. & Jezzard, P. 2007b. Cerebral perfusion response to hyperoxia. Journal of Cerebral Blood Flow & Metabolism, 27, 69-75.
    • Bulte, D. P., Drescher, K. & Jezzard, P. 2009. Comparison of hypercapnia based calibration techniques for measurement of cerebral oxygen metabolism with MRI. Magnetic Resonance in Medicine, 61, 391-398.
    • Chen, J. J. & Pike, G. B. 2010. Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI. Journal of Cerebral Blood Flow & Metabolism, 30, 1094-1099.
    • Cheyne, D., Gaetz, W., Garnero, L., Lachaux, J.-P., Ducorps, A., Schwartz, D. & Varela, F. J. 2003. Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Cognitive brain research, 17, 599-611.
    • Chiarelli, P. A., Bulte, D. P., Gallichan, D., Piechnik, S. K., Wise, R. & Jezzard, P. 2007a. Flow-metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging. Magnetic Resonance in Medicine, 57, 538- 547.
    • Chiarelli, P. A., Bulte, D. P., Wise, R., Gallichan, D. & Jezzard, P. 2007b. A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage, 37, 808-820.
    • Cohen, A. S., Burns, B. & Goadsby, P. J. 2009. High-flow oxygen for treatment of cluster headache. JAMA: the journal of the American Medical Association, 302, 2451-2457.
    • Davis, T. L., Kwong, K. K., Weisskoff, R. M. & Rosen, B. R. 1998. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proceedings of the National Academy of Sciences of the United States of America, 95, 1834-1839.
    • Driver, I., Wharton, S. J., Croal, P. L., Bowtell, R., Francis, S. & Gowland, P. 2013. Global intravascular and local hyperoxia contrast phase-based blood oxygenation measurements. Proc. Intl. Soc. Mag. Reson. Med., Salt Lake City, 21, 3251.
    • Driver, I. D., Hall, E. L., Wharton, S. J., Pritchard, S. E., Francis, S. T. & Gowland, P. A. 2012. Calibrated BOLD using direct measurement of changes in venous oxygenation. Neuroimage, 63, 1178-1187.
    • Field, A. S., Laurienti, P. J., Yen, Y.-F., Burdette, J. H. & Moody, D. M. 2003. Dietary caffeine consumption and withdrawal: confounding variables in quantitative cerebral perfusion studies? 1. Radiology, 227, 129-135.
    • Francis, S. T., Bowtell, R. & Gowland, P. A. 2008. Modeling and Optimization of LookLocker Spin Labeling for Measuring Perfusion and Transit Time Changes in Activation Studies Taking into Account Arterial Blood Volume. Mag. Res. Med., 59, 316-325.
    • Gardener, A. G., Gowland, P. A. & Francis, S. T. 2009. Implementation of Quantitative Perfusion Imaging Using Pulsed Arterial Spin Labeling at Ultra-High Field. Mag. Res. Med., 61, 874-882.
    • Gauthier, C. J. & Hoge, R. D. 2012. A generalized procedure for calibrated MRI incorporating hyperoxia and hypercapnia. Human Brain Mapping, 60, 1212-1225.
    • Goodwin, J. A., Vidyasagar, R., Balanos, G. M., Bulte, D. & Parkes, L. M. 2009. Quantitative fMRI using hyperoxia calibration: reproducibility during a cognitive Stroop task. Neuroimage, 47, 573-580.
    • Grgac, K., Zijl, P. & Qin, Q. 2013. Hematocrit and oxygenation dependence of blood 1H2O T1 at 7 tesla. Magnetic Resonance in Medicine, 70, 1153-1159.
    • Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A. & Salmelin, R. 2001. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proceedings of the National Academy of Science USA, 98, 694-699.
    • Hall, E. L., Driver, I. D., Croal, P. L., Francis, S. T., Gowland, P. A., Morris, P. G. & Brookes, M. J. 2011. The effect of hypercapnia on resting and stimulus induced MEG signals. NeuroImage, IN PRESS.
    • Ito, H., Kanno, I., Ibaraki, M., Hatazawa, J. & Miura, S. 2003. Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. Journal of Cerebral Blood Flow & Metabolism, 23, 665-670.
    • Jensen, O., Bonnefond, M. & VanRullen, R. 2012. An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in cognitive sciences, 16, 200-206.
    • Jensen, O. & Mazaheri, A. 2010. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in human neuroscience, 4, 186.
    • Jones, M., Berwick, J., Hewson-Stoate, N., Gias, C. & Mayhew, J. 2005. The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation. Neuroimage, 27, 609-623.
    • Kaskinoro, K., Maksimow, A., Laitio, R., Scheinin, H. & Jääskeläinen, S. 2010. Normobaric hyperoxia does not induce significant electroencephalogram changes in healthy male subjects: 7AP4-5. European Journal of Anaesthesiology (EJA), 27, 121-122.
    • Kastrup, A., Krüger, G., Neumann-Haefelin, T., Glover, G. H. & Moseley, M. E. 2002. Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation. Neuroimage, 15, 74-82.
    • Kety, S. S. & Schmidt, C. F. 1948. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. Journal of Clinical Investigation, 27, 476-483.
    • Kim, T., Hendrich, K. S., Masamoto, K. & Kim, S. G. 2007. Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI. Journal of Cerebral Blood Flow & Metabolism, 27, 1235-1247.
    • Klimesch, W., Sauseng, P. & Hanslmayr, S. 2007. EEG alpha oscillations: the inhibitiontiming hypothesis. Brain research reviews, 53, 63-88.
    • Kolbitsch, C., Lorenz, I. H., Hörmann, C., Hinteregger, M., Löckinger, A., Moser, P. L., Kremser, C., Schocke, M., Felber, S. & Pfeiffer, K. P. 2002. The influence of hyperoxia on regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and cerebral blood flow velocity in the middle cerebral artery (CBFVMCA) in human volunteers. Magnetic resonance imaging, 20, 535-541.
    • Kwong, K. K., Wanke, I., Donahue, K. M., Davis, T. L. & Rosen, B. R. 1995. EPI Imaging of Global Increase of Brain MR Signal with Breathâ€hold Preceded by Breathing O2. Magnetic Resonance in Medicine, 33, 448-452.
    • Lee, S. P., Duong, T. Q., Yang, G., Iadecola, C. & Kim, S. G. 2001. Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI. Magnetic Resonance in Medicine, 45, 791-800.
    • Lindauer, U., Gethmann, J., Kuhl, M., Kohl-Bareis, M. & Dirnagl, U. 2003. Neuronal activity-induced changes of local cerebral microvascular blood oxygenation in the rat: effect of systemic hyperoxia or hypoxia. Brain Research, 975, 135-140.
    • Loeppky, J. A., Luft, U. C. & Fletcher, E. R. 1983. Quantitative description of whole blood CO2 dissociation curve and Haldane effect. Respiration Physiology, 51, 167-181.
    • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. 2001. Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150- 157.
    • Lopes da Silva, F. H., Van Lierop, T., Schrijer, C. & Storm van Leeuwen, W. 1973. Organization of thalamic and cortical alpha rhythms: spectra and coherences. Electroencephalography and Clinical Neurophysiology, 35, 627-639.
    • Losert, C., Peller, M., Schneider, P. & Reiser, M. 2002. Oxygen enhanced MRI of the brain. Magnetic Resonance in Medicine, 48, 271-277.
    • Maleki, N., Alsop, D. C., Dai, W., Hudson, C., Han, J. S., Fisher, J. & Mikulis, D. 2011. The Effect of Hypercarbia and Hyperoxia on the Total Blood Flow to the Retina as Assessed by Magnetic Resonance Imaging. Investigative Ophthalmology & Visual Science, 52, 6867-6874.
    • Mark, C. I., Fisher, J. A. & Pike, B. 2011. Improved fMRI calibration: Precisely controlled hyperoxic versus hypercapnic stimuli. Neuroimage, 54, 1102-1111.
    • Mohtasib, R. S., Lumley, G., Goodwin, J. A., Emsley, H. C. A., Sluming, V. & Parkes, L. M. 2012. Calibrated fMRI during a cognitive Stroop task reveals reduced metabolic response with increasing age. Neuroimage, 59, 1143-1151.
    • Moss, M. C., Scholey, A. B. & Wesnes, K. 1998. Oxygen administration selectively enhances cognitive performance in healthy young adults: a placebo-controlled double-blind crossover study. Psychopharmacology, 138, 27-33.
    • Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I. & Malach, R. 2005. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science, 309, 951-954.
    • Murphy, K., Harris, A. & Wise, R. 2013. Measuring the influence of hypercapnia on absolute CMRO2 in humans. Proc. Intl. Soc. Mag. Reson. Med., Salt Lake City, 21, 3343.
    • Nichols, T. & Holmes, A. 2002. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15, 1-25.
    • Niedermeyer, E. & Lopes da Silva, F. H. 1999. Electroencephalography : Basic Principles, Clinical Applications, and Related Fields, 4th Edn, Baltimore, Williams and Wilkins.
    • Noseworthy, M. D., Kim, J. K., Stainsby, J. A., Stanisz, G. J. & Wright, G. A. 1999. Tracking Oxygen Effects on MR Signal in Blood and Skeletal Muscle During Hyperoxia Exposure. Journal of Magnetic Resonance Imaging, 9, 814-820.
    • O'Connor, J. P. B., Jackson, A., Buonaccorsi, G. A., Buckley, D. L., Roberts, C., Watson, Y., Cheung, S., McGrath, D. M., Naish, J. H., Rose, C. J., Dark, P. M., Jayson, G. C. & Parker, G. J. M. 2007. Organ-Specific Effects of Oxygen and Carbogen Gas Inhalation on Tissue Longitudinal Relaxation Times. Magnetic Resonance in Medicine, 58, 490-496.
    • Ogawa, S. & Lee, T. M. 1990. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magnetic Resonance in Medicine, 16, 9-18.
    • Ossandon, T., Vidal, J. R., Ciumas, C., Jerbi, K., Hamamé, C. M., Dalal, S. S., Bertrand, O., Minotti, L., Kahane, P. & Lachaux, J.-P. 2011. Efficient "pop-out" visual search elicits sustained broadband gamma activity in the dorsal attention network. The Journal of Neuroscience, 32, 3414-3421.
    • Ossandon, T., Vidal, J. R., Ciumas, C., Jerbi, K., Hamamé, C. M., Dalal, S. S., Bertrand, O., Minotti, L., Kahane, P. & Lachaux, J.-P. 2012. Efficient "pop-out" visual search elicits sustained broadband gamma activity in the dorsal attention network. The Journal of Neuroscience, 32, 3414-3421.
    • Ozkurt, B., Cinar, O., Cevik, E., Acar, A. Y., Arslan, D., Eyi, E. Y., Jay, L., Yamanel, L. & Madsen, T. 2012. Efficacy of high-flow oxygen therapy in all types of headache: a prospective, randomized, placebo-controlled trial. The American journal of emergency medicine, 30, 1760-1764.
    • Rane, S. D. & Gore, J. C. 2013. Measurement of T1 of human arterial and venous blood at 7T. Magnetic resonance imaging, 31, 477-479.
    • Robinson, S. & Vrba, J. 1998. Functional Neuroimaging by synthetic aperture magnetometry, Sendai, Tohoku University Press.
    • Rooney, W. D., Johnson, G., Li, X., Cohen, E. R., Kim, S.-G., Ugurbil, K. & Springer Jr, C. S. 2007. Magnetic Field and Tissue Dependencies of Human Brain Longitudinal 1H2O Relaxation in Vivo. Magnetic Resonance in Medicine, 57, 308-318.
    • Rostrup, E., Larsson, H., Toft, P., Garde, K. & Henriksen, O. 1995. Signal changes in gradient echo images of human brain induced by hypo- and hyperoxia. NMR in Biomedicine, 8, 41-47.
    • Rostrup, E., Law, I., Blinkenberg, M., Larsson, H., Born, A. P., Holm, S. & Paulson, O. 2000. Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study. Neuroimage, 11, 87-97.
    • Sekihara, K., Nagarajan, S. S., Peoppel, D., Marantz, A. & Miyashita, Y. 2001. Reconstructing Spatio-Temporal Activities of Neural Sources Using an MEG Vector Beamformer Technique. IEEE Transactions on Biomedical Engineering, 48, 760-771.
    • Seo, J.-G., Lee, D.-I., Hwang, Y.-H., Lee, H.-W., Jung, D.-K., Suh, C.-K., Kwon, S.-H. & Park, S.-P. 2007a. Comparison of cognitive effects of lamotrigine and oxcarbazepine in epilepsy patients. Journal of Clinical Neurology, 3, 31-37.
    • Seo, J.-G., Lee, D.-I., W, Hwang, Y.-H., T, Lee, H.-W., Jung, D.-K., Suh, C.-K., Kwon, S.-H. & Park, S.-P., J 2007b. ComparisonThe Effect of cognitive effects of lamotrigineOxygen Inhalation on Cognitive Function and oxcarbazepineEEG in epilepsy patientsHealthy Adults. Journal of Clinical NeurologyPsychopharmacology and Neuroscience 35, 31-3725.
    • Shen, Y., Ahearn, T., Clemence, M. & Schwarzbauer, C. 2011. Magnetic resonance imaging of the mean venous vessel size in the human brain using transient hyperoxia. Neuroimage, 55, 1063-1067.
    • Singh, M., Kim, S. G. & Kim, T. S. 2003. Correlation between BOLD-fMRI and EEG signal changes in response to visual stimulus frequency in humans. Magnetic Resonance in Medicine, 49, 108-114.
    • Slessarev, M., Han, J., Mardimae, A., Prisman, E., Preiss, D., Volgyesi, G., Ansel, C., Duffin, J. & Fisher, J. A. 2007. Prospective targeting and control of end-tidal CO2 and O2 concentrations. The Journal of Physiology, 581, 1207-1219.
    • Smith, D. B. D. & Strawbridge, P. J. 1974. Auditory and Visual Evoked Potentials During Hyperoxia. Electroencephalography and Clinical Neurophysiology, 37, 393-398.
    • Stefanovic, B., Warnking, J. M., Kobayashi, E., Bagshaw, A. P., Hawco, C., Dubeau, F., Gotman, J. & Pike, G. B. 2005. Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. Neuroimage, 28, 205-215.
    • Stevenson, C. M., Brookes, M. J. & Morris, P. G. 2011. Beta Band correlates of the fMRI BOLD response. Human Brain Mapping, 32, 182-197.
    • Tadamura, E., Hatabu, H., Li, W., Prasad, P. V. & Edelman, R. R. 1997. Effect of Oxygen Inhalation on Relaxation Times in Various Tissues. JMRI, 7, 220-225.
    • Thesen, T., Leontiev, O., Song, T., Dehghani, N., Hagler Jr, D. J., Huang, M., Buxton, R. & Halgren, E. 2012. Depression of cortical activity in humans by mild hypercapnia. Human Brain Mapping, 33, 715-726.
    • Thut, G., Nietzel, A., Brandt, S. A. & Pascual-Leone, A. 2006. Alpha-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. The Journal of Neuroscience, 26, 9494-9502.
    • Uludag, K., Dubowitz, D. J., Yoder, E. J., Restom, K., Liu, T. T. & Buxton, R. B. 2004. Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage, 23, 148-155.
    • Van Drongelen, W., Yuchtman, M., Van Veen, B. D. & Van Huffelen, A. C. 1996. A Spatial Filtering Technique to Detect and Localize Multiple Sources in the Brain. Brain Topography, 9, 39-49.
    • Van Veen, B. D., Van Drongelen, W., Yuchtman, M. & Suzuki, A. 1997. Localisation of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on biomedical engineering, 44, 867-880.
    • Watson, N., Beards, S., Altaf, N., Kassner, A. & Jackson, A. 2000. The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase contrast angiography. European journal of anaesthesiology, 17, 152-159.
    • Winterer, G., Carver, F. W., Musso, F., Mattay, V., Weinberger, D. R. & Coppola, R. 2007. Complex relationship between BOLD signal and synchronization/desynchronization of human brain MEG oscillations. Human Brain Mapping, 28, 805-816.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article