Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gesellchen, F.; Bernassau, A.L.; Dejardin, T.; Cumming, D.R.S.; Riehle, M.O. (2014)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Accurate control over positioning of cells is a highly desirable feature in tissue engineering applications since it allows, for example, population of substrates in a controlled fashion, rather than relying on random seeding. Current methods to achieve a differential distribution of cells mostly use passive patterning methods to change chemical, mechanical or topographic properties of surfaces, making areas differentially permissive to the adhesion of cells. However, these methods have no ad hoc control over the actual deposition of cells. Direct patterning methods like bioprinting offer good control over cell position, but require sophisticated instrumentation and are often cost- and time-intensive. Here, we present a novel electronically controlled method of generating dynamic cell patterns by acoustic trapping of cells at a user-determined position, with a heptagonal acoustic tweezer device. We demonstrate the capability of the device to create complex patterns of cells using the device’s ability to re-position acoustic traps by using a phase shift in the acoustic wave, and by switching the configuration of active piezoelectric transducers. Furthermore, we show that by arranging Schwann cells from neonatal rats in a linear pattern we are able to create Bands of Büngner-like structures on a non-structured surface and demonstrate that these features are able to guide neurite outgrowth from neonatal rat dorsal root ganglia.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Principles of Tissue Engineering, ed. R. Lanza, R. Langer and J. P. Vacanti, Academic Press, Burlington, 2007.
    • 2 C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, Science, 1997, 276, 1425-1428.
    • 3 L. Csaderova, E. Martines, K. Seunarine, N. Gadegaard, C. D. Wilkinson and M. O. Riehle, Small, 2010, 6, 2755-2761.
    • 4 C. M. Lo, H. B. Wang, M. Dembo and Y. L. Wang, Biophys. J., 2000, 79, 144-152.
    • 5 B. Cortese, G. Gigli and M. Riehle, Adv. Funct. Mater., 2009, 19, 2961-2968.
    • 6 J. A. Barron, P. Wu, H. D. Ladouceur and B. R. Ringeisen, Biomed. Microdevices, 2004, 6, 139-147.
    • 7 T. Xu, J. Jin, C. Gregory, J. J. Hickman and T. Boland, Biomaterials, 2005, 26, 93-99.
    • 8 M. Suzuki, T. Yasukawa, H. Shiku and T. Matsue, Biosens. Bioelectron., 2008, 24, 1049-1053.
    • 9 J. Voldman, Annu. Rev. Biomed. Eng., 2006, 8, 425-454.
    • 10 Y. Nahmias, R. E. Schwartz, C. M. Verfaillie and D. J. Odde, Biotechnol. Bioeng., 2005, 92, 129-136.
    • 11 R. K. Pirlo, Z. Ma, A. Sweeney, H. Liu, J. X. Yun, X. Peng, X. Yuan, G. X. Guo and B. Z. Gao, Rev. Sci. Instrum., 2011, 82, 013708.
    • 12 S. P. Grogan, C. Pauli, P. Chen, J. Du, C. B. Chung, S. D. Kong, C. W. Colwell Jr., M. K. Lotz, S. Jin and D. D. D'Lima, Tissue Eng., Part C, 2012, 18, 496-506.
    • 13 R. Singhvi, A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. Wang, G. M. Whitesides and D. E. Ingber, Science, 1994, 264, 696-698.
    • 14 J. L. Tan, W. Liu, C. M. Nelson, S. Raghavan and C. S. Chen, Tissue Eng., 2004, 10, 865-872.
    • 15 D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, D. E. Ingber and G. M. Whitesides, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 2408-2413.
    • 16 Y. Nakayama, A. Furumoto, S. Kidoaki and T. Matsuda, Photochem. Photobiol., 2003, 77, 480-486.
    • 17 M. Yamato, O. H. Kwon, M. Hirose, A. Kikuchi and T. Okano, J. Biomed. Mater. Res., 2001, 55, 137-140.
    • 18 M. N. Yousaf, B. T. Houseman and M. Mrksich, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 5992-5996.
    • 19 A. L. Bernassau, C. K. Ong, Y. Ma, P. G. MacPherson, C. R. Courtney, M. Riehle, B. W. Drinkwater and D. R. Cumming, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2011, 58, 2132-2138.
    • 20 K. A. Garvin, D. C. Hocking and D. Dalecki, Ultrasound Med. Biol., 2010, 36, 1919-1932.
    • 21 L. Gherardini, S. Radel, S. Sielemann, O. Doblhoff-Dier, M. Groschl, E. Benes and A. J. McLoughlin, Bioseparation, 2001, 10, 153-162.
    • 22 J. Shi, D. Ahmed, X. Mao, S. C. Lin, A. Lawit and T. J. Huang, Lab Chip, 2009, 9, 2890-2895.
    • 23 A. L. Bernassau, F. Gesellchen, P. G. Macpherson, M. Riehle and D. R. Cumming, Biomed. Microdevices, 2012, 14, 559-564.
    • 24 M. D. Binder, N. Hirokawa and U. Windhorst, Encyclopedia of neuroscience, Springer, Berlin, New York, 2009.
    • 25 V. T. Ribeiro-Resende, B. Koenig, S. Nichterwitz, S. Oberhoffner and B. Schlosshauer, Biomaterials, 2009, 30, 5251-5259.
    • 26 D. M. Thompson and H. M. Buettner, Tissue Eng., 2001, 7, 247-265.
    • 27 K. E. Schmalenberg and K. E. Uhrich, Biomaterials, 2005, 26, 1423-1430.
    • 28 C. Miller, S. Jeftinija and S. Mallapragada, Tissue Eng., 2001, 7, 705-715.
    • 29 J. K. Alexander, B. Fuss and R. J. Colello, Neuron Glia Biology, 2006, 2, 93-103.
    • 30 A. L. Bernassau, P. Glynne-Jones, F. Gesellchen, M. Riehle, M. Hill and D. R. Cumming, Ultrasonics, 2014, 54, 268-274.
    • 31 C. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nat. Methods, 2012, 9, 671-675.
    • 32 R. Rezakhaniha, A. Agianniotis, J. T. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser and N. Stergiopulos, Biomech. Model. Mechanobiol., 2012, 11, 461-473.
    • 33 E. Lamers, J. te Riet, M. Domanski, R. Luttge, C. G. Figdor, J. G. Gardeniers, X. F. Walboomers and J. A. Jansen, Eur. Cells Mater., 2012, 23, 182-193; discussion 184-193.
    • 34 E. Potthoff, O. Guillaume-Gentil, D. Ossola, J. Polesel-Maris, S. LeibundGut-Landmann, T. Zambelli and J. A. Vorholt, PLoS One, 2012, 7, e52712.
    • 35 G. Weder, N. Blondiaux, M. Giazzon, N. Matthey, M. Klein, R. Pugin, H. Heinzelmann and M. Liley, Langmuir, 2010, 26, 8180-8186.
    • 36 R. I. Litvinov, H. Shuman, J. S. Bennett and J. W. Weisel, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 7426-7431.
    • 37 H. T. Khuong and R. Midha, Curr. Neurol. Neurosci. Rep., 2013, 13, 322.
    • 38 Y. J. Son and W. J. Thompson, Neuron, 1995, 14, 125-132.
    • 39 S. M. Hall, Ann. N. Y. Acad. Sci., 1999, 883, 215-233.
    • 40 S. Y. Fu and T. Gordon, J. Neurosci., 1995, 15, 3886-3895.
    • 41 R. Deumens, A. Bozkurt, M. F. Meek, M. A. Marcus, E. A. Joosten, J. Weis and G. A. Brook, Prog. Neurobiol., 2010, 92, 245-276.
    • 42 A. Bozkurt, R. Deumens, C. Beckmann, L. Olde Damink, F. Schugner, I. Heschel, B. Sellhaus, J. Weis, W. JahnenDechent, G. A. Brook and N. Pallua, Biomaterials, 2009, 30, 169-179.
    • 43 J. B. Phillips, S. C. Bunting, S. M. Hall and R. A. Brown, Tissue Eng., 2005, 11, 1611-1617.
    • 44 D. M. Thompson and H. M. Buettner, Ann. Biomed. Eng., 2004, 32, 1120-1130.
    • 45 Y. G. Zhang, Q. S. Sheng, F. Y. Qi, X. Y. Hu, W. Zhao, Y. Q. Wang, L. F. Lan, J. H. Huang and Z. J. Luo, J. Mater. Sci.: Mater. Med., 2013, 24, 1767-1780.
    • 46 M. Georgiou, S. C. Bunting, H. A. Davies, A. J. Loughlin, J. P. Golding and J. B. Phillips, Biomaterials, 2013, 34, 7335-7343.
    • 47 S. Parrinello, I. Napoli, S. Ribeiro, P. Wingfield Digby, M. Fedorova, D. B. Parkinson, R. D. Doddrell, M. Nakayama, R. H. Adams and A. C. Lloyd, Cell, 2010, 143, 145-155.
    • 48 C. Fernandez-Valle, D. Gorman, A. M. Gomez and M. B. Bunge, J. Neurosci., 1997, 17, 241-250.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article