Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Goh, S.; Loeffler, A.; Lloyd, D. H.; Nair, S. P.; Good, L. (2015)
Publisher: BioMed Central
Journal: BMC Microbiology
Languages: English
Types: Article
Subjects: MRSA, Research Article, mecA, ftsZ, Methicillin-resistant Staphylococcus pseudintermedius, Antisense, mecA, ftsZ, MRSA, Methicillin-resistant Staphylococcus pseudintermedius, Microbiology (medical), Antisense

Classified by OpenAIRE into

mesheuropmc: biochemical phenomena, metabolism, and nutrition
Background Antibiotic resistance genes can be targeted by antisense agents, which can reduce their expression and thus restore cellular susceptibility to existing antibiotics. Antisense inhibitors can be gene and pathogen specific, or designed to inhibit a group of bacteria having conserved sequences within resistance genes. Here, we aimed to develop antisense peptide nucleic acids (PNAs) that could be used to effectively restore susceptibility to β-lactams in methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP). Results Antisense PNAs specific for conserved regions of the mobilisable gene mecA, and the growth essential gene, ftsZ, were designed. Clinical MRSA and MRSP strains of high oxacillin resistance were treated with PNAs and assayed for reduction in colony forming units on oxacillin plates, reduction in target gene mRNA levels, and cell size. Anti-mecA PNA at 7.5 and 2.5 μM reduced mecA mRNA in MRSA and MRSP (p < 0.05). At these PNA concentrations, 66 % of MRSA and 92 % of MRSP cells were killed by oxacillin (p < 0.01). Anti-ftsZ PNA at 7.5 and 2.5 μM reduced ftsZ mRNA in MRSA and MRSP, respectively (p ≤ 0.05). At these PNA concentrations, 86 % of MRSA cells and 95 % of MRSP cells were killed by oxacillin (p < 0.05). Anti-ftsZ PNAs resulted in swelling of bacterial cells. Scrambled PNA controls did not affect MRSA but sensitized MRSP moderately to oxacillin without affecting mRNA levels. Conclusions The antisense PNAs effects observed provide in vitro proof of concept that this approach can be used to reverse β-lactam resistance in staphylococci. Further studies are warranted as clinical treatment alternatives are needed. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0599-x) contains supplementary material, which is available to authorized users.

Share - Bookmark

Cite this article