LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Castro-Alvaredo, Olalla; Fring, Andreas (2001)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: QC, High Energy Physics - Theory
By representing the field content as well as the particle creation operators in terms of fermionic Fock operators, we compute the corresponding matrix elements of the Federbush model. Only when these matrix elements satisfy the form factor consistency equations involving anyonic factors of local commutativity, the corresponding operators are local. We carry out the ultraviolet limit, analyze the momentum space cluster properties and demonstrate how the Federbush model can be obtained from the $SU(3)_3$-homogeneous sine-Gordon model. We propose a new Lagrangian which on one hand constitutes a generalization of the Federbush model in a Lie algebraic fashion and on the other a certain limit of the homogeneous sine-Gordon models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] P. Weisz, Phys. Lett. B67, 179 (1977); M. Karowski and P. Weisz, Nucl. Phys. B139 (1978) 445.
    • [2] F.A. Smirnov, Form factors in Completely Integrable Models of Quantum Field Theory, Adv. Series in Math. Phys. 14 (World Scientific, Singapore, 1992).
    • [3] V.P. Yurov and Al.B. Zamolodchikov, Int. J. Mod. Phys. A6 (1991) 3419.
    • [4] D. Fioriavanti and M. Stanishkov, Nucl. Phys. B577 (2000) 500; Nucl. Phys. B591 (2000) 685.
    • [5] M. Maillet, Correlation functions of quantum integrable models, JHEP-proceeding on Non-perturbative quantum effects, Paris (2000).
    • [6] H. Babujian, A. Fring, M. Karowski and A. Zapletal, Nucl. Phys. B538 [FS] (1999) 535; S. Lukyanov and Al.B. Zamolodchikov, Form factors of soliton-creating operators in the sine-Gordon model, hep-th/0102079; H. Babujian and M. Karowski, Phys. Lett. B471 (1999) 53; Exact form factors in integrable quantum field theories: the sine-Gordon model (II), hep-th/0105178; A. Nakayashiki and Y. Takeyama, On Form Factors of SU(2) Invariant Thirring Model, math-ph/0105040.
    • [8] S. Khoroshkin, A. LeClair and S. Pakuliak, Adv. Theor. Math. Phys. 3 (1999) 1227.
    • [9] A.B. Zamolodchikov and Al.B. Zamolodchikov, Ann. of Phys. 120 (1979) 253; M. Karowski, Field Theoretical Methods in Particle Physics, ed. W. Ru¨hl (Plenum, New York, 1980).
    • [10] L.D. Faddeev, Sov. Sci. Rev. Math. Phys. C1 (1980) 107.
    • [11] A. Fring, Int. Jour. of Mod. Phys. 11 (1996) 1337.
    • [12] R. Ko¨berle, V. Kurak and J.A. Swieca, Phys. Rev D20 (1979) 897; M. Karowski and H.J. Thun, Nucl. Phys. B190 (1981) 61.
    • [13] P. Jordan and E.P. Wigner, Zeit. fu¨r Phys. 47 (1928) 631.
    • [16] M. Sato, T. Miwa and M. Jimbo, Proc. Japan Acad. 53 (1977) 6; 147; 153.
    • [26] A.S. Wightman, High Energy Interactions and Field Theory, Carg´ese Lectures, ed. M. Levy, (Gordon and Breach, New York, 1996).
    • [27] S.N.M. Ruijsenaars, Comm. of Math. Phys. 87 (1982) 181.
    • [28] M. Gomes and A.J. da Silva, Phys. Rev. D23 (1981) 1764.
    • [29] W. Thirring, Ann. of Phys. 3 (1958) 91.
    • [30] R. Haag, Local Quantum Physics 2nd Edition (Springer, Berlin, 1996).
    • [31] B. Schroer, T.T. Truong and P. Weisz, Ann. of Phys. 102 (1976) 156.
    • [33] S. Coleman, Phys. Rev. D11 (1975) 2088.
    • [34] C.R. Ferna´ndez-Pousa, Teor´ıas Cua´nticas de Campos Solito´nicas y Ecuaciones de Toda Afines no Abelianas, PhD. Thesis, Santiago de Compostela (Spain) 1998; J.L. Miramontes and C.R. Ferna´ndez-Pousa, Phys. Lett. B472 (2000) 392.
    • [35] B. Schroer and T.T. Truong, Phys. Rev. D15 (1977) 1684.
    • [36] O.A. Castro-Alvaredo and A. Fring, Nucl. Phys. B604 (2001) 367.
    • [37] Al.B. Zamolodchikov, Nucl. Phys. B348 (1991) 619.
    • [38] A. Fring, G. Mussardo and P. Simonetti, Nucl. Phys. B393 (1993) 413.
    • [39] L.P.S. Singh and C.R. Hagen, Ann. of Phys. 115 (1978) 136.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article