LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cheng, E.; Gurski, N.; Riehl, E. (2014)
Publisher: Cambridge University Press
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Mathematics::Category Theory, Mathematics::Algebraic Topology, Mathematics::K-Theory and Homology
A multivariable adjunction is the generalisation of the notion of a 2-variable adjunction, the classical example being the hom/tensor/cotensor trio of functors, to n + 1 functors of n variables. In the presence of multivariable adjunctions, natural transformations between certain composites built from multivariable functors have “dual” forms. We refer to corresponding natural transformations as multivariable or parametrised mates, generalising the mates correspondence for ordinary adjunctions, which enables one to pass between natural transformations involving left adjoints to those involving right adjoints. A central problem is how to express the naturality (or functoriality) of the parametrised mates, giving a precise characterization of the dualities so-encoded.\ud We present the notion of “cyclic double multicategory” as a structure in which to organise multivariable adjunctions and mates. While the standard mates correspondence is described using an isomorphism of double categories, the multivariable version requires the framework of “double multicategories”. Moreover, we show that the analogous isomorphisms of double multicategories give a cyclic action on the multimaps, yielding the notion of “cyclic double multicategory”. The work is motivated by and applied to Riehl's approach to algebraic monoidal model categories.

Share - Bookmark

Cite this article