LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Burke, Daren J; Brown, Wendy A (2015)
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: QD
The evaporation of icy mantles, which have been formed on the surface of dust grains, is acknowledged to give rise to the rich chemistry that has been observed in the vicinity of hot cores and corinos. It has long been established that water ice is the dominant species within many astrophysical ices. However, other molecules found within astrophysical ices, particularly methanol, can influence the desorption of volatile species from the ice. Here we present a detailed investigation of the adsorption and desorption of methanol-containing ices, showing the effect that methanol has on the trapping and release of volatiles from model interstellar ices. OCS and CO2 have been used as probe molecules since they have been suggested to reside in water-rich and methanol-rich environments. Experiments show that methanol fundamentally changes the desorption characteristics of both OCS and CO2, leading to the observation of mainly codesorption of both species with bulk water ice for the tertiary ices and causing a lowering of the temperature of the volcano component of the desorption. In contrast, binary ices are dominated by standard volcano desorption. This observation clearly shows that codepositing astrophysically relevant impurities with water ice, such as methanol, can alter the desorption dynamics of volatiles that become trapped in the pores of the amorphous water ice during the sublimation process. Incorporating experimental data into a simple model to simulate these processes on astrophysical timescales shows that the additional methanol component releases larger amounts of OCS from the ice mantle at lower temperatures and earlier times. These results are of interest to astronomers as they can be used to model the star formation process, hence giving information about the evolution of our Universe.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adriaens D. A., Goumans T. P. M., Catlow C. R. A., Brown W. A., 2010, J. Phys. Chem. C, 114, 1892
    • Ayotte P., Smith R. S., Stevenson K. P., Dohna´lek Z., Kimmel G. A., Kay B. D., 2001, J. Geophys. Res., 106, 387
    • Backus E., Grecea M., Kleyn A., Bonn M., 2004, Phys. Rev. Lett., 92, 236101
    • Bar-Nun A., Kleinfeld I., Kochavi E., 1988, Phys. Rev. B, 38, 7749
    • Blake D., Allamandola L., Sandford S., Hudgins D., Freund F., 1991, Science, 254, 548
    • Bockelee-Morvan D et al. 2000, A&A, 1114, 1101
    • Bolina A. S., Wolff A. J., Brown W. A., 2005a, J. Phys. Chem. B, 109, 16836
    • Bolina A. S., Wolff A. J., Brown W. A., 2005b, J. Chem. Phys., 122, 44713
    • Boogert A. C. A., Tielens A. G. G. M., Ceccarelli C., Boonman A. M. S., van Dishoeck E. F., Keane J. V., 2000, A&A, 360, 683
    • Brown W. A., Bolina A. S., 2007, MNRAS, 374, 1006
    • Burke D. J., Puletti F., Brown W. A., Woods P. M., Viti S., Slater B., 2015, MNRAS, 447, 1444
    • Burke D. J., Brown W. A., 2010, Phys. Chem. Chem. Phys., 12, 5947
    • Codella C., Viti S., Williams D. A., Bachiller R., 2006, ApJ, 644, L41
    • Collings M. P., Anderson M. A., Chen R., Dever J. W., Viti S., Williams D. A., McCoustra M. R. S., 2004, MNRAS, 354, 1133
    • Cruikshank D. P et al. 1998, Icarus, 135, 389
    • Dartois E., Schutte W., Geballe T. R., Demyk K., Ehrenfreund P., d'Hendecourt L., 1999, A&A, 35342, L32
    • De Jong A. M., Niemantsverdriet J. W., 1990, Surf. Sci., 233, 355
    • DelloRusso N., Disanti M. A., Mumma M. J., Magee-Sauer K., Rettig T. W., 1998, Icarus, 135, 377
    • Edridge J. L., Freimann K., Burke D. J., Brown W. A., 2013, Phil. Trans. R. Soc. A, 371, 20110578
    • Ehrenfreund P., d'Hendecourt L., Dartois E., Jourdain de Muizon M., Breitfellner M., Puget J. L., Habing H. J., 1997, Icarus, 130, 1
    • Ehrenfreund P et al. 1999, A&A, 253, 240
    • Fraser H. J., Collings M. P., McCoustra M. R. S., Williams D. A., 2001, MNRAS, 327, 1165
    • Garozzo M., Fulvio D., Kanuchova Z., Palumbo M. E., Strazzulla G., 2010, A&A, 67, 509
    • Gibb E. L et al. 2000, ApJ, 536, 347
    • Goumans T. P. M., Uppal M. A., Brown W. A., 2008, MNRAS, 384, 1158
    • Grim R. J. A., Bass F., Geballe T. R., Greenberg J. M., Schutte W., 1991, A&A, 243, 473
    • Hagen W., Tielens A. G. G. M., Greenberg J. M., 1981, Chem. Phys., 56, 367
    • Herbst E., van Dishoeck E. F., 2009, ARA&A, 47, 427
    • Ioppolo S., van Boheemen Y., Cuppen H. M., van Dishoeck E. F., Linnartz H., 2011. MNRAS, 413, 2281
    • Jewitt D. C., Luu J., 2004, Nature, 432, 731
    • Klinger J., 1983, J. Phys. Chem., 87, 4209
    • Lellouch E et al. 1995, Nature, 373, 592
    • Mart´ın-Dome´nech R., Mun˜oz Caro G. M., Bueno J., Goesmann F., 2014, A&A, 564, A8
    • Merlin F., Guilbert A., Dumas C., Barucci M. A., de Bergh C., Vernazza P., 2007, A&A, 466, 1185
    • Merlin F., Quirico E., Barucci M. A., de Bergh C., 2012, A&A, 540, 1
    • Mills F., Esposito L., Yung Y., 2007. in Esposito L., Stofan E., Cravens T. (eds), Exploring Venus As A Terrestrial Planet. American Geophysical Union, Washington, DC, p. 176
    • Notesco G., Bar-Nun A., 2000, Icarus, 148, 456
    • Palumbo M. E., Geballe T. R., Tielens A. G. G. M., 1997, 20, 839
    • Palumbo M. E., Tielens A. G. G. M., Tokunaga A. T., 1995, ApJ, 449, 674
    • Pontoppidan K. M., Dartois E., van Dishoeck E. F., Thi W.-F., D'Hendecourt L., 2003, A&A, 20404, L17
    • Smith R. S., Kay B. D., 1999, Nature, 398, 788
    • Smith R. S., Huang C., Wong E. K. L., Kay B. D., 1997, Phys. Rev. Lett., 79, 909
    • Souda R., 2004, Phys. Rev. Lett., 93, 235502
    • Souda R., 2007, Phys. Rev. B, 75, 184116
    • Souda R., 2008, J. Chem. Phys., 129, 124707
    • Viti S., Collings M. P., Dever J. W., McCoustra M. R. S., Williams D. A., 2004, MNRAS, 354, 1141
    • Whittet D. C. B., 1993, in Millar T. J., Williams D. A. (eds), Dust and Chemistry in Astronomy. IoP Publishing, Bristol, p. 9
    • Wolff A. J., Carlstedt C., Brown W. A., 2007, J. Phys. Chem. C, 111, 5990
    • Yung Y. L., Liang M. C., Jiang X., Shia R. L., Lee C., Be´zard B., Marcq E., 2009, J. Geophys. Res., 114, E00B34
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article