LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Glass, CA; Shakhlevich, NV (2013)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
We study a problem of minimising the total number of zeros in the gaps between blocks of consecutive ones in the columns of a binary matrix by permuting its rows. The problem is referred to as the Consecutive Ones Matrix Augmentation Problem, and is known to be NP-hard. An analysis of the structure of an optimal solution allows us to focus on a restricted solution space, and to use an implicit representation for searching the space. We develop an exact solution algorithm, which is linear-time in the number of rows if the number of columns is constant, and two constructive heuristics to tackle instances with an arbitrary number of columns. The heuristics use a novel solution representation based upon row sequencing. In our computational study, all heuristic solutions are either optimal or close to an optimum. One of the heuristics is particularly effective, especially for problems with a large number of rows.

Share - Bookmark

Funded by projects

Cite this article