LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Woodward, Eleanor
Languages: English
Types: Doctoral thesis
Subjects: R1

Classified by OpenAIRE into

mesheuropmc: hemic and lymphatic diseases
Acute myeloid leukaemia (AML) is a heterogeneous disorder characterised by the accumulation of immature haematopoietic cells blocked at various stages of differentiation. Despite improved survival rates over the past decade, relapse occurs in approximately 70% patients undergoing chemotherapy. A potential reason for this is that current clinical protocols do not take account of the level of residual disease present at remission. Therefore, one strategy to reduce relapse rates is to monitor minimal residual disease and continue to treat until the patient is minimal residual disease negative. Current minimal residual disease markers are available for patients with characterised fusion genes but approximately 50% of patients have no detectable chromosomal aberration and therefore are without markers. Gene expression profiling is a powerful tool for disease classification, prognosis and therapeutic predictions. This study aimed to investigate the use gene expression profiling to identify novel minimal residual disease markers for specific AML sub-groups. Patient diagnostic samples were profiled to identify genes specific to AML patients with a favourable translocation in order to establish the "proof-of-principle". Several genes identified were followed in patient diagnostic and follow- up samples and compared to the markers currently used. Continuing with normal karyotype AML, genes were identified as specific to this sub-group. Several homeobox (HOX) genes and the Wilms' tumour (WT1) gene were identified and their MRD levels followed in diagnostic and follow-up samples. Only WT1 identified as specific to normal karyotype AML met the necessary criteria to be an MRD marker. Although the majority of genes selected from the GEP in this study proved unsuitable as markers, the identification and validation of a marker already used for MRD monitoring, WT1, demonstrates the ability of gene expression profiling to identify potential minimal residual disease markers in normal karyotype AML.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Martin,F.H., Suggs,S.V., Langley,K.E., Lu,H.S., Ting.J., Okino.K.H., Morris,C.F., McNiece.I.K., Jacobsen,F.W., Mendiaz.E.A., & . (1990) Primary structure and functional expression of rat and human stem cell factor DNAs. Cell, 63, 203-211.
    • Martin-Villar,E., Megias.D., Castel,S., Yurrita.M.M., Vilaro.S., & Quintanilla,M. (2006) Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J.Cell Scl., 119, 4541-4553.
    • Martin-Villar,E., Scholl,F.G., Gamallo,C., Yurrita.M.M., MunozGuerra.M., Cruces,J., & Quintanilla,M. (2005) Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int.J. Cancer, 113, 899-910.
    • Martineau.M., Berger,R., Lillington.D.M., Moorman,A.V., & SeckerWalker.L.M. (1998) The t(6;11)(q27;q23) translocation in acute leukemia: a laboratory and clinical study of 30 cases. EU Concerted Action 11q23 Workshop participants. Leukemia, 12, 788-791.
    • Mason,K.D., Juneja.S.K., & Szer.J. (2006) The immunophenotype of acute myeloid leukemia: is there a relationship with prognosis? Blood Rev., 20, 71-82.
    • Matsushita, M., Ikeda.H., Kizaki.M., Okamoto.S., Ogasawara.M., Ikeda.Y., & Kawakami.Y. (2001) Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia. Br.J.Haematol., 112, 916-926.
    • McCulloch.E.A. (1983) Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood, 62, 1-13.
    • Mead.A.J., Gale.R.E., Hills,R.K., Gupta,M., Young,B.D., Burnett,A.K., & Linch.D.C. (2008) Conflicting data on the prognostic significance of FLT3/TKD mutations in acute myeloid leukemia might be related to the incidence of biallelic disease. Blood, 112, 444-445.
    • Mehrotra.B., George,T.I., Kavanau.K., vet-Loiseau,H., Moore,D., Willman.C.L., Slovak,M.L., Atwater,S., Head.D.R., & Pallavicini.M.G. (1995) Cytogenetically aberrant cells in the stem cell compartment (CD34+lin-) in acute myeloid leukemia. Blood, 86, 1139-1147.
    • Meshinchi.S. & Appelbaum.F.R. (2009) Structural and functional alterations of FLT3 in acute myeloid leukemia. Clin.Cancer Res., 15, 4263-4269.
    • Meyers,S., Lenny,N., & Hiebert.S.W. (1995) The t(8;21) fusion protein interferes with AML-1 B-dependent transcriptional activation. Mol.Cell Biol., 15, 1974-1982.
    • Mijovic.A. & Mufti,G.J. (1998) The myelodysplastic syndromes: towards a functional classification. Blood Rev., 12, 73-83.
    • Miller,W.H., Jr., Kakizuka.A., Frankel.S.R., Warrell.R.P., Jr., DeBlasio,A., Levine,K., Evans,R.M., & Dmitrovsky.E. (1992) Reverse transcription polymerase chain reaction for the rearranged retinoic acid receptor alpha clarifies diagnosis and detects minimal residual disease in acute promyelocytic leukemia. Proc.Natl.Acad.Sci.U.S.A, 89, 2694-2698.
    • Minden,M.D., Till.J.E., & McCulloch.E.A. (1978) Proliferative state of blast cell progenitors in acute myeloblastic leukemia (AML). Blood, 52, 592-600.
    • Misaghian,N., Ligresti,G., Steelman,L.S., Bertrand,F.E., Basecke.J., Libra,M., Nicoletti.F., Stivala.F., Milella.M., Tafuri.A., Cervello,M., Martelli,A.M., & McCubrey.J.A. (2009) Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia, 23, 25- 42.
    • Mistry.A.R., Pedersen,E.W., Solomon,E., & Grimwade.D. (2003) The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev., 17, 71-97.
    • Miyamoto,T., Nagafuji.K., Akashi.K., Harada.M., Kyo.T., Akashi.T., Takenaka.K., Mizuno.S., Gondo.H., Okamura.T., Dohy.H., & Niho.Y. (1996) Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood, 87, 4789-4796.
    • Miyoshi.H., Shimizu,K., Kozu.T., Maseki.N., Kaneko.Y., & Ohki.M. (1991) t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc.Natl.Acad.Sci.U.S.A, 88, 10431-10434.
    • Mizuki.M., Fenski.R., Halfter.H., Matsumura,!., Schmidt,R., Muller,C., Gruning.W., Kratz-Albers,K., Serve,S., Steur.C., Buchner,T., Kienast.J., Kanakura.Y., Berdel.W.E., & Serve,H. (2000) Flt3 Montesano.R., Matsumoto.K., Nakamura.T., & Orci,L. (1991) Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell, 67, 901-908.
    • Montserrat,E. & Moreno,C. (2008) Chronic lymphocytic leukaemia: a short overview. Ann.Oncol., 19 Suppl 7, vii320-vii325.
    • Moore,M.A., Chung,K.Y., Plasilova,M., Schuringa,J.J., Shieh,J.H., Zhou,P., & Morrone,G. (2007) NUP98 dysregulation in myeloid leukemogenesis. Ann.N.Y.Acad.Sci., 1106, 114-142.
    • Moreno,I., Martin,G., Bolufer.P., Barragan.E., Rueda.E., Roman,J., Fernandez,P., Leon,P., Mena,A., Cervera.J., Torres,A., & Sanz,M.A. (2003) Incidence and prognostic value of FLT3 internal tandem duplication and D835 mutations in acute myeloid leukemia. Haematologlca, 88,19-24.
    • Moretti.P., Simmons,P., Thomas,P., Haylock.D., Rathjen,P., Vadas,M., & D'Andrea.R. (1994) Identification of homeobox genes expressed in human haemopoietic progenitor cells. Gene, 144, 213-219.
    • Morris,S.W., Kirstein.M.N., Valentine,M.B., Dittmer,K.G., Shapiro,D.N., Saltman.D.L., & Look.A.T. (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science, 263, 1281-1284.
    • Mozziconacci.M.J., Liberatore,C., Brunei,V., Grignani.F., Arnoulet,C., Ferrucci.P.F., Fernandez,F., Sainty,D., Pelicci.P.G., Birg.F., & Lafage-Pochitaloff.M. (1998) In vitro response to all-trans retinoic acid of acute promyelocytic leukemias with nonreciprocal PML/RARA or RARA/PML fusion genes. Genes Chromosomes.Cancer, 22, 241-250.
    • Mrozek.K. & Bloomfield,C.D. (2006) Chromosome aberrations, gene mutations and expression changes, and prognosis in adult acute myeloid leukemia. Hematology.Am.Soc.Hematol.Educ.Program., 169-177.
    • Mrozek.K., Dohner.H., & Bloomfield,C.D. (2007a) Influence of new molecular prognostic markers in patients with karyotypically normal acute myeloid leukemia: recent advances. Curr. Opin.Hematoi., 14, 106-114.
    • Mrozek.K., Heerema.N.A., & Bloomfield,C.D. (2004) Cytogenetics in acute leukemia. Blood Rev., 18, 115-136.
    • Mu.Z.M., Chin.K.V., Liu.J.H., Lozano,G., & Chang,K.S. (1994) PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol.CellBiol., 14, 6858-6867.
    • Mueller,B.U. & Pabst.T. (2006) C/EBPalpha and the pathophysiology of acute myeloid leukemia. Curr.Opin.Hematol., 13, 7-14.
    • Mufti,G.J. (1992) Chromosomal deletions in the myelodysplastic syndrome. Leuk.Res., 16, 35-41.
    • Mulford.D. (2008) Antibody therapy for acute myeloid leukemia. Semin.Hematoi., 45,104-109.
    • Mutch,D.M., Berger,A., Mansourian.R., Rytz.A., & Roberts,M.A. (2002) The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC.Bioinformatics., 3, 17.
    • Nakamura,S., Gohda.E., Matsuo,Y., Yamamoto,!., & Minowada.J. (1994) Significant amount of hepatocyte growth factor detected in blood and bone marrow plasma of leukaemia patients. Br.J.Haematol., 87, 640-642.
    • Nakano.Y., Kiyoi.H., Miyawaki.S., Asou.N., Ohno.R., Saito.H., & Naoe.T. (1999) Molecular evolution of acute myeloid leukaemia in relapse: unstable N-ras and FLT3 genes compared with p53 gene. Br.J.Haematol., 104, 659-664.
    • Neben.K., Schnittger.S., Brors.B., Tews.B., Kokocinski.F., Haferlach.T., Muller,J., Hahn.M., Hiddemann.W., Eils.R., Lichter.P., & Schoch.C. (2005) Distinct gene expression patterns associated with. Oncogene, 24, 1580-1588.
    • Nishii.K., Kita.K., Nadim.M., Miwa.H., Ohoishi.K., Yamaguchi.M., & Shirakawa.S. (1995) Expression of interleukin-5 receptors on acute myeloid leukaemia cells: association with immunophenotype and karyotype. Br.J.Haematol., 91, 169-172.
    • Nishino.T., Hisha.H., Nishino.N., Adachi.M., & Ikehara.S. (1995) Hepatocyte growth factor as a hematopoietic regulator. Blood, 85, 3093-3100.
    • Nucifora.G. (1997) The EVI1 gene in myeloid leukemia. Leukemia, 11, 2022-2031.
    • Nucifora.G., Larson,R.A., & Rowley,J.D. (1993) Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood, 82, 712-715.
    • Ogawa,H., Tamaki.H., lkegame,K., Soma.T., Kawakami,M., Tsuboi,A., Kim,E.H., Hosen.N., Murakami, M., Fujioka.T., Masuda,T., Taniguchi,Y., Nishida,S., Oji,Y., Oka,Y., & Sugiyama.H. (2003) The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood, 101, 1698- 1704.
    • Okuda.T., van.D.J., Hiebert.S.W., Grosveld.G., & Downing,J.R. (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84, 321-330.
    • Ommen.H.B., Nyvold.C.G., Braendstrup.K., Andersen,B.L., Ommen.I.B., Hasle.H., Hokland.P., & Ostergaard.M. (2008) Relapse prediction in acute myeloid leukaemia patients in complete remission using WT1 as a molecular marker: development of a mathematical model to predict time from molecular to clinical relapse and define optimal sampling intervals. Br.J.Haematol., 141, 782-791.
    • Oohashi.T., Sugimoto.M., Mattei.M.G., & Ninomiya.Y. (1994) Identification of a new collagen IV chain, alpha 6(IV), by cDNA isolation and assignment of the gene to chromosome Xq22, which is the same locus for COL4A5. J.Biol.Chem., 269, 7520- 7526.
    • Orange,J.S. & Balias,Z.K. (2006) Natural killer cells in human health and disease. Clin.Immunol., 118, 1-10.
    • Ostergaard.M., Olesen.L.H., Hasle.H., Kjeldsen.E., & Hokland.P. (2004) WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients - results from a single-centre study. Br.J.Haematol., 125, 590-600.
    • Ozeki.M. & Shively,J.E. (2008) Differential cell fates induced by all-trans retinoic acid-treated HL-60 human leukemia cells. J.Leukoc.Biol.
    • Pabst.T., Mueller,B.U., Zhang,P., Radomska.H.S., Narravula.S., Schnittger.S., Behre.G., Hiddemann.W., & Tenen.D.G. (2001) Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat.Genet., 27, 263-270.
    • Pandolfi.P.P. (2001) In vivo analysis of the molecular genetics of acute promyelocytic leukemia. Oncogene, 20, 5726-5735.
    • Pandolfi.P.P., Alcalay.M., Fagioli.M., Zangrilli.D., Mencarelli.A., Diverio.D., Biondi.A., Lo.C.F., Rambaldi.A., Grignani.F., & . (1992) Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBOJ., 11, 1397-1407.
    • Papadaki.C., Dufour.A., Seibl.M., Schneider,S., Bohlander.S.K., Zellmeier.E., Mellert.G., Hiddemann.W., & Spiekermann.K. (2009) Monitoring minimal residual disease in acute myeloid leukaemia with NPM1 mutations by quantitative PCR: clonal evolution is a limiting factor. Br.J.Haematol., 144, 517-523.
    • Park.M., Dean.M., Cooper,C.S., Schmidt,M., O'Brien,S.J., Blair,D.G., & Vande Woude.G.F. (1986) Mechanism of met oncogene activation. Cell, 45, 895-904.
    • Paydas.S., Tanriverdi.K., Yavuz.S., Disel.U., Baslamisli.F., & Burgut.R. (2005) PRAME mRNA levels in cases with acute leukemia: clinical importance and future prospects. Am.J.Hematoi., 79, 257-261.
    • Perea,G., Lasa.A., Aventin.A., Domingo,A., Villamor.N., Queipo de Llano,M.P., Llorente.A., Junca.J., Palacios,C., Fernandez,C., Gallart.M., Font.L., Tormo.M., Florensa.L., Bargay.J., Marti.J.M., Vivancos.P., Torres,P., Berlanga.J.J., Badell.l., Brunet,S., Sierra,J., & Nomdedeu.J.F. (2006) Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia, 20, 87- 94.
    • Perez,A., Kastner.P., Sethi,S., Lutz.Y., Reibel.C., & Chambon.P. (1993) PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. EMBO J., 12, 3171-3182.
    • Perry,C., Eldor.A., & Soreq.H. (2002) Runx1/AML1 in leukemia: disrupted association with diverse protein partners. Leuk.Res., 26, 221-228.
    • Pessano.S., Palumbo,A., Ferrero.D., Pagliardi.G.L., Bottero.L., Lai.S.K., Meo.P., Carter,C., Hubbell.H., Lange,B., & (1984) Subpopulation heterogeneity in human acute myeloid leukemia determined by monoclonal antibodies. Blood, 64, 275-281.
    • Peterson,L.F. & Zhang,D.E. (2004) The 8;21 leukemogenesis. Oncogene, 23, 4255-4262.
    • Pierce,A., Whetton.A.D., Owen-Lynch,PJ., Tavernier,J., Spooncer,E., Dexter,T.M., & Heyworth.C.M. (1998) Ectopic interleukin-5 receptor expression promotes proliferation without development in a multipotent hematopoietic cell line. J.Cell Sci., 111 ( Pt 6), 815-823.
    • Pineault.N., Helgason.C.D., Lawrence,H.J., & Humphries,R.K. (2002) Differential expression of Hox, Meisl, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp.Hematol., 30, 49-57.
    • Polliack.A. (2002) Hairy cell leukemia: biology, clinical diagnosis, unusual manifestations and associated disorders. Rev.Clin.Exp.Hematol., 6, 366-388.
    • Preudhomme,C., Sagot.C., Boissel.N., Cayuela,J.M., Tigaud,!., De,B.S., Thomas,X., Raffoux.E., Lamandin,C., Castaigne.S., Fenaux,P., & Dombret.H. (2002) Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood, 100, 2717-2723.
    • Puccetti.E. & Ruthardt,M. (2004) Acute promyelocytic leukemia: PML/RARalpha and the leukemic stem cell. Leukemia, 18, 1169- 1175.
    • Qin,Y., Zhu,H., Jiang,B., Li,J., Lu,X., Li,L., Ruan,G., Liu,Y., Chen,S., & Huang,X. (2009) Expression patterns of WT1 and PRAME in acute myeloid leukemia patients and their usefulness for monitoring minimal residual disease. Leuk.Res., 33, 384-390.
    • Quentmeier.H., Martelli.M.P., Dirks,W.G., Bolli,N., Liso,A., Macleod,R.A., Nicoletti,!., Mannucci.R., Pucciarini.A., Bigerna,B., Martelli,M.F., Mecucci,C., Drexler,H.G., & Falini,B. (2005) Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and cytoplasmic expression of nucleophosmin. Leukemia, 19, 1760- 1767.
    • Radmacher.M.D., Marcucci.G., Ruppert,A.S., Mrozek.K., Whitman,S.P., Vardiman,J.W., Paschka,P., Vukosavljevic,T., Baldus,C.D., Kolitz,J.E., Caligiuri,M.A., Larson,R.A., & Bloomfield,C.D. (2006) Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood, 108, 1677-1683.
    • Radomska,H.S., Huettner,C.S., Zhang,P., Cheng,T., Scadden,D.T., & Tenen,D.G. (1998) CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol.Cell Biol., 18, 4301-4314.
    • Raponi.M., Harousseau,J.L., Lancet,J.E., Lowenberg.B., Stone,R., Zhang,Y., Rackoff,W., Wang,Y., & Atkins,D. (2007) Identification of molecular predictors of response in a study of tipifarnib treatment in relapsed and refractory acute myelogenous leukemia. Clin.Cancer Res., 13, 2254-2260.
    • Raskind,W.H., Steinmann.L., & Najfeld,V. (1998) Clonal development of myeloproliferative disorders: clues to hematopoietic differentiation and multistep pathogenesis of cancer. Leukemia, 12, 108-116.
    • Ravandi,F. & Estrov,Z. (2006) Eradication of leukemia stem cells as a new goal of therapy in leukemia. Clin.Cancer Res., 12, 340-344.
    • Redner.R.L., Rush.E.A., Faas,S., Rudert.W.A., & Corey,S.J. (1996) The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood, 87, 882-886.
    • Reilly,J.T. (2005) Pathogenesis of acute myeloid leukaemia and inv(16)(p13;q22): a paradigm for understanding leukaemogenesis? Br.J.Haematol., 128, 18-34.
    • Rhoades,K.L., Hetherington.C.J., Rowley.J.D., Hiebert,S.W., Nucifora.G., Tenen.D.G., & Zhang,D.E. (1996) Synergistic upregulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc.Natl.Acad.Sci. U.S.A, 93, 11895-11900.
    • Rhoads,D.D., Dixit,A., & Roufa,D.J. (1986) Primary structure of human ribosomal protein S14 and the gene that encodes it. Mol. Cell Biol., 6, 2774-2783.
    • Riedt,T., Ebinger.M., Salih,H.R., Tomiuk,J., Handgretinger,R., Kanz,L., Grunebach,F., & Lengerke,C. (2009) Aberrant expression of the homeobox gene CDX2 in pediatric acute lymphoblastic leukemia. Blood, 113, 4049-4051.
    • Roche,J., Zeng,C., Baron,A., Gadgil.S., Gemmill.R.M., Tigaud,!., Thomas,X., & Drabkin,H.A. (2004) Hox expression in AML identifies a distinct subset of patients with intermediate cytogenetics. Leukemia, 18, 1059-1063.
    • Rodriguez,S., Gaunt,T.R., & Day,I.N. (2007) Molecular genetics of human growth hormone, insulin-like growth factors and their pathways in common disease. Hum.Genet., 122, 1-21.
    • Romana.S.P., Radford-Weiss,l., Ben,A.R., Schluth.C., Petit,A., Dastugue.N., Talmant.P., Bilhou-Nabera,C., Mugneret.F., Lafage-Pochitaloff,M., Mozziconacci.M.J., Andrieu.J., Lai,J.L., Terre,C., Rack,K., Cornillet-Lefebvre.P., Luquet,!., Nadal,N., Romeo,P.H., Prandini.M.H., Joulin.V., Mignotte.V., Prenant.M., Vainchenker.W., Marguerie,G., & Uzan.G. (1990) Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature, 344, 447-449.
    • Rosen,J.M. & Jordan,C.T. (2009) The increasing complexity of the cancer stem cell paradigm. Science, 324, 1670-1673.
    • Ross,D.M., Branford,S., Melo,J.V., & Hughes,T.P. (2009) Reply to 'What do we mean by sensitivity when we talk about detecting minimal residual disease?' by Steinbach and Debatin. Leukemia, 23, 819-820.
    • Ross.M.E., Mahfouz,R., Onciu.M., Liu.H.C., Zhou,X., Song,G., Shurtleff,S.A., Pounds,S., Cheng,C., Ma,J., Ribeiro.R.C., Rubnitz.J.E., Girtman,K., Williams,W.K., Raimondi,S.C., Liang,D.C., Shih,L.Y., Pui.C.H., & Downing,J.R. (2004) Gene expression profiling of pediatric acute myelogenous leukemia. Blood, 104, 3679-3687.
    • Rowley,J.D. (1973) Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 243, 290-293.
    • Rubin,J.S., Chan,A.M., Bottaro.D.P., Burgess,W.H., Taylor,W.G., Cech.A.C., Hirschfield.D.W., Wong,J., Miki,T., Finch,P.W., & . (1991) A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor. Proc.Natl.Acad.Sci.U.S.A, 88, 415-419.
    • Ruggero,D., Wang,Z.G., & Pandolfi.P.P. (2000) The puzzling multiple lives of PML and its role in the genesis of cancer. Bioessays, 22, 827-835.
    • Rusten.L.S., Lyman,S.D., Veiby,O.P., & Jacobsen,S.E. (1996) The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34+ bone marrow progenitor cells in vitro. Blood, 87, 1317-1325.
    • Sauvageau.G., Lansdorp.P.M., Eaves,C.J., Hogge.D.E., Dragowska.W.H., Reid.D.S., Largman.C., Lawrence,H.J., & Humphries,R.K. (1994) Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc.Natl.Acad.Sci.U.S.A, 91,12223-12227.
    • Sauvageau,G., Thorsteinsdottir,U., Eaves,C.J., Lawrence, H.J., Largman,C., Lansdorp.P.M., & Humphries,R.K. (1995) Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev., 9, 1753-1765.
    • Sauvageau,G., Thorsteinsdottir.U., Hough,M.R., Hugo,P., Lawrence,H.J., Largman.C., & Humphries,R.K. (1997) Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity., 6, 13-22.
    • Sawyers,C.L. (1999) Chronic myeloid leukemia. N.Engl.J.Med., 340, 1330-1340.
    • Sawyers,C.L., Denny,C.T., & Witte,O.N. (1991) Leukemia and the disruption of normal hematopoiesis. Cell, 64, 337-350.
    • Schmid,D., Heinze.G., Linnerth.B., Tisljar.K., Kusec.R., Geissler.K., Sillaber.C., Laczika.K., Mitterbauer.M., Zochbauer.S., Mannhalter.C., Haas.O.A., Lechner.K., Jager.U., & Gaiger.A. (1997) Prognostic significance of WT1 gene expression at diagnosis in adult de novo acute myeloid leukemia. Leukemia, 11,639-643.
    • Schnittger.S., Schoch.C., Dugas,M., Kern.W., Staib.P., Wuchter.C., Loffler.H., Sauerland.C.M., Serve,H., Buchner,T., Haferlach.T., & Hiddemann.W. (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood, 100, 59-66.
    • Schnittger.S., Schoch.C., Kern.W., Mecucci.C., Tschulik.C., Martelli.M.F., Haferlach.T., Hiddemann.W., & Falini.B. (2005) Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood, 106, 3733-3739.
    • Schoch.C., Kohlmann.A., Schnittger.S., Brors.B., Dugas,M., Mergenthaler.S., Kern.W., Hiddemann.W., Eils.R., & Haferlach.T. (2002) Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc.Natl.Acad.Sci.U.S.A, 99, 10008-10013.
    • Scholl,C., Bansal.D., Dohner.K., Eiwen.K., Huntly.B.J., Lee.B.H., Rucker,F.G., Schlenk.R.F., Bullinger.L., Dohner.H., Gilliland,D.G., & Frohling.S. (2007b) The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J.Clin.Invest, 117, 1037-1048.
    • Scholl,C., Bansal.D., Dohner.K., Eiwen.K., Huntly.B.J., Lee.B.H., Rucker,F.G., Schlenk.R.F., Bullinger.L., Dohner.H., Gilliland,D.G., & Frohling.S. (2007a) The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J.Clin.Invest, 117, 1037-1048.
    • Scholl,S., Loncarevic.I.F., Krause,C., Kunert.C., Clement,J.H., & Hoffken.K. (2005) Minimal residual disease based on patient specific Flt3-ITD and -ITT mutations in acute myeloid leukemia. Leuk.Res., 29, 849-853.
    • Schuler,F. & Dolken.G. (2006) Detection and monitoring of minimal residual disease by quantitative real-time PCR. Clin.Chim.Acta, 363, 147-156.
    • Scott,E.W., Simon,M.C., Anastasi.J., & Singh,H. (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science, 265, 1573-1577.
    • Seidel,C., Borset.M., Turesson,!., Abildgaard.N., Sundan.A., & Waage.A. (1998) Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood, 91, 806-812.
    • Sessions,J. (2007) Chronic myeloid leukemia in 2007. J.Manag.Care Pharm., 13, 4-7.
    • Sherr.C.J. & Roberts,J.M. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev., 13,1501-1512.
    • Shih.L.Y., Huang,C.F., Wu.J.H., Lin.T.L., Dunn,P., Wang,P.N., Kuo.M.C., Lai.C.L., & Hsu.H.C. (2002) Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a Shih.L.Y., Huang,C.F., Wu.J.H., Wang,P.N., Lin.T.L., Dunn,P., Chou.M.C., Kuo,M.C., & Tang,C.C. (2004a) Heterogeneous patterns of FLT3 Asp(835) mutations in relapsed de novo acute myeloid leukemia: a comparative analysis of 120 paired diagnostic and relapse bone marrow samples. Clin.Cancer Res., 10, 1326-1332.
    • Shih,L.Y., Huang,C.F., Wu.J.H., Wang,P.N., Lin.T.L., Dunn,P., Chou,M.C., Kuo.M.C., & Tang,C.C. (2004b) Heterogeneous patterns of FLT3 Asp(835) mutations in relapsed de novo acute myeloid leukemia: a comparative analysis of 120 paired diagnostic and relapse bone marrow samples. Clin.Cancer Res., 10, 1326-1332.
    • Shivdasani.R.A., Fujiwara.Y., McDevitt,M.A., & Orkin.S.H. (1997) A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J., 16, 3965-3973.
    • Sievers.E.L., Lange,B.J., Buckley,J.D., Smith,F.O., Wells,D.A., igneaultCreech,C.A., Shults,K.E., Bernstein,I.D., & Loken,M.R. (1996) Prediction of relapse of pediatric acute myeloid leukemia by use of multidimensional flow cytometry. J.Natl.Cancer Inst., 88, 1483- 1488.
    • Skinnider.B.F., Connors,J.M., Sutcliffe.S.B., & Gascoyne,R.D. (1999) Anaplastic large cell lymphoma: a clinicopathologic analysis. Hematol.Oncol., 17, 137-148.
    • Slovak,M.L., Kopecky.K.J., Cassileth.P.A., Harrington,D.H., Theil.K.S., Mohamed,A., Paietta.E., Willman,C.L., Head,D.R., Rowe,J.M., Forman,S.J., & Appelbaum.F.R. (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood, 96, 4075-4083.
    • Small,D. (2006) FLT3 mutations: biology and treatment. Hematology.Am.Soc.Hematol.Educ.Program., 178-184.
    • Small,D., Levenstein,M., Kim,E., Carow.C., Amin,S., Rockwell,P., Witte,L., Burrow,C., Ratajczak.M.Z., Gewirtz.A.M., & . (1994) STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc.Natl.Acad.Sci. U.S.A,91, 459-463.
    • Sorrentino.B.P. (2004) Clinical strategies for expansion haematopoietic stem cells. Nat Rev.Immunol., 4, 878-888.
    • Speck,N.A. & Gilliland,D.G. (2002) Core-binding factors in haematopoiesis and leukaemia. Nat.Rev.Cancer, 2, 502-513.
    • Stasi.R., Evangelista,M.L., Buccisano.F., Venditti,A., & Amadori.S. (2008) Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia. Cancer Treat.Rev., 34, 49-60.
    • Steinbach,D. & Debatin.K.M. (2008) What do we mean by sensitivity when we talk about detecting minimal residual disease? Leukemia, 22, 1638-1639.
    • Steinbach,D., Schramm,A., Eggert,A., Onda,M., Dawczynski.K., Rump,A., Pastan,!., Wittig.S., Pfaffendorf,N., Voigt,A., Zintl.F., & Gruhn,B. (2006) Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin.Cancer Res., 12, 2434-2441.
    • Stirewalt.D.L., Meshinchi,S., Kopecky.K.J., Fan,W., PogosovaAgadjanyan,E.L., Engel.J.H., Cronk,M.R., Dorcy.K.S., McQuary,A.R., Hockenbery,D., Wood.B., Heimfeld.S., & Radich.J.P. (2008) Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosomes. Cancer, 47, 8-20.
    • Suzuki,T., Kiyoi.H., Ozeki.K., Tomita,A., Yamaji,S., Suzuki,R., Kodera,Y., Miyawaki,S., Asou,N., Kuriyama.K., Yagasaki.F., Shimazaki.C., Akiyama,H., Nishimura.M., Motoji,T., Shinagawa.K., Takeshita.A., Ueda,R., Kinoshita.T., Emi,N., & Naoe.T. (2005) Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood, 106, 2854-2861.
    • Szebeni.A., Herrera,J.E., & Olson,M.O. (1995) Interaction of nucleolar protein B23 with peptides related to nuclear localization signals. Biochemistry, 34, 8037-8042.
    • Takahashi.A., Satake,M., Yamaguchi-lwai.Y., Bae.S.C., Lu,J., Maruyama.M., Zhang,Y.W., Oka,H., Arai,N., Arai,K., & . (1995) Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood, 86, 607-616.
    • Takeda.A., Goolsby,C., & Yaseen,N.R. (2006) NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Res., 66, 6628-6637.
    • Takenokuchi,M., Yasuda.C., Takeuchi.K., Nakamachi,Y., Mukai.M., Kondo,S., Kumagai,S., Saigo,K., Murayama,T., Koizumi,T., & Tatsumi.E. (2004) Quantitative nested reverse transcriptase PCR vs. real-time PCR for measuring AML1/ETO (MTG8) transcripts. Clin.Lab Haematol., 26,107-114.
    • Tallman.M.S., Gilliland,D.G., & Rowe,J.M. (2005) Drug therapy for acute myeloid leukemia. Blood, 106, 1154-1163.
    • Tanner,S.M., Austin,J.L., Leone,G., Rush.L.J., Plass.C., Heinonen,K., Mrozek,K., Sill,H., Knuutila,S., Kolitz,J.E., Archer,K.J., Caligiuri,M.A., Bloomfield,C.D., & de la,C.A. (2001) BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hematopoiesis and acute leukemia. Proc.Natl.Acad.Sci.U.S.A, 98, 13901-13906.
    • Tantravahi,R., Schwenn.M., Henkle.C., Nell,M., Leavitt,P.R., Griffin,J.D., & Weinstein,H.J. (1984) A pericentric inversion of chromosome 16 is associated with dysplastic marrow eosinophils in acute myelomonocytic leukemia. Blood, 63, 800-802.
    • Teitell.M.A. & Pandolfi,P.P. (2009) Molecular genetics of acute lymphoblastic leukemia. Annu.Rev.Pathol., 4, 175-198.
    • Testa,J.R., Mintz.U., Rowley.J.D., Vardiman,J.W., & Golomb.H.M. (1979) Evolution of karyotypes in acute nonlymphocytic leukemia. Cancer Res., 39, 3619-3627.
    • Thiede.C., Koch,S., Creutzig,E., Steudel.C., lllmer.T., Schaich.M., & Ehninger,G. (2006) Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood, 107, 4011-4020.
    • Thiede.C., Steudel.C., Mohr.B., Schaich.M., Schakel.U., Platzbecker.U., Wermke.M., Bornhauser.M., Ritter,M., Neubauer.A., Ehninger.G., & lllmer.T. (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood, 99, 4326-4335.
    • Thompson,A., Quinn,M.F., Grimwade.D., O'Neill,C.M., Ahmed,M.R., Grimes,S., McMullin.M.F., Cotter,F., & Lappin.T.R. (2003) Global down-regulation of HOX gene expression in PML-RARalpha + acute promyelocytic leukemia identified by small-array real-time PCR. Blood, 101, 1558-1565.
    • Tiacci.E., Liso.A., Piris.M., & Falini.B. (2006) Evolving concepts in the pathogenesis of hairy-cell leukaemia. Nat.Rev.Cancer, 6, 437- 448.
    • Tobal.K., Johnson,P.R., Saunders,M.J., Harrison,C.J., & Liu Yin.J.A. (1995) Detection of CBFB/MYH11 transcripts in patients with inversion and other abnormalities of chromosome 16 at presentation and remission. Br.J.Haematol., 91, 104-108.
    • Tobal.K., Moore,H., Macheta.M., & Yin.J.A. (2001) Monitoring minimal residual disease and predicting relapse in APL by quantitating PML-RARalpha transcripts with a sensitive competitive RT-PCR method. Leukemia, 15,1060-1065.
    • Tobal.K., Newton,J., Macheta.M., Chang,J., Morgenstern.G., Evans,P.A., Morgan,G., Lucas,G.S., & Liu Yin.J.A. (2000) Molecular quantitation of minimal residual disease in acute myeloid leukemia with t(8;21) can identify patients in durable remission and predict clinical relapse. Blood, 95, 815-819.
    • Vannucchi.A.M., Guglielmelli.P., & Tefferi.A. (2009) Advances in understanding and management of myeloproliferative neoplasms. CA Cancer J.Clin., 59, 171-191.
    • Vardiman.J., Catovsky.D., Flandrin.G.R., & Pierre,R. (1984) Fourth International Workshop on Chromosomes in Leukemia 1982: Correlation between morphology and karyotype. Cancer Genet.Cytogenet. ,11, 275-281.
    • Wang.Z.G., Delva.L., Gaboli.M., Rivi.R., Giorgio,M., Cordon-Cardo,C., Grosveld.F., & Pandolfi.P.P. (1998) Role of PML in cell growth and the retinoic acid pathway. Science, 279,1547-1551.
    • Weidner.K.M., Arakaki,N., Hartmann,G., Vandekerckhove,J., Weingart.S., Rieder,H., Fonatsch.C., Tsubouchi.H., Hishida.T., Daikuhara.Y., & . (1991) Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc.Natl.Acad.Sci.U.S.A, 88, 7001-7005.
    • Weimar, I.S., Voermans.C., Bourhis.J.H., Miranda,N., van den Berk.P.C., Nakamura,T., de Gast.G.C., & Gerritsen.W.R. (1998) Hepatocyte growth factor/scatter factor (HGF/SF) affects proliferation and migration of myeloid leukemic cells. Leukemia, 12, 1195-1203.
    • Weisberg.E., Boulton,C., Kelly,L.M., Manley,P., Fabbro.D., Meyer,T., Gilliland,D.G., & Griffin,J.D. (2002) Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell, 1, 433-443.
    • Weisel,K.C., Yildirim,S., Schweikle,E., Kanz,L., & Mohle,R. (2009) Regulation of FLT3 and its ligand in normal hematopoietic progenitor cells. Ann.Hematol., 88, 203-211.
    • Weiss,A. & Schlessinger,J. (1998) Switching signals on or off by receptor dimerization. Cell, 94, 277-280.
    • Whitman,S.P., Ruppert,A.S., Radmacher.M.D., Mrozek.K., Paschka.P., Langer.C., Baldus.C.D., Wen,J., Racke,F., Powell,B.L., Kolitz.J.E., Larson,R.A., Caligiuri.M.A., Marcucci.G., & Bloomfield,C.D. (2008) FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct geneexpression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood, 111, 1552-1559.
    • Wicki.A., Lehembre.F., Wick.N., Hantusch.B., Kerjaschki.D., & Christofori.G. (2006) Tumor invasion in the absence of epithelialmesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell, 9, 261-272.
    • Wilson,C.S., Davidson,G.S., Martin,S.B., Andries,E., Potter,J., Harvey,R., Ar,K., Xu,Y., Kopecky.K.J., Ankerst.D.P., Gundacker,H., Slovak,M.L., Mosquera-Caro,M., Chen, I.M., Stirewalt.D.L., Murphy,M., Schultz,F.A., Kang,H., Wang,X., Radich.J.P., Appelbaum.F.R., Atlas,S.R., Godwin,J., & Willman.C.L. (2006) Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood, 108, 685-696.
    • Zon.L.I., Yamaguchi,Y., Yee,K., Albee,E.A., Kimura,A., Bennett,J.C., Orkin,S.H., & Ackerman,S.J. (1993) Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood, 81, 3234-3241.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article