Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Dawei; Hussain, Fayaz; Khesro, Amir; Feteira, Antonio; Tian, Ye; Zhao, Quanliang; Reaney, Ian M.; Zhang, S. (2016)
Publisher: Blackwell
Languages: English
Types: Article
Lead-free piezoceramics with the composition (1−x)(K1−yNay)NbO3-x(Bi1/2Na1/2)ZrO3 (KNyN-xBNZ) were prepared using a conventional solid-state route. X-ray diffraction, Raman spectroscopy, and dielectric measurements as a function of temperature indicated the coexistence of rhombohedral (R) and tetragonal (T) phase, typical of a morphotropic phase boundary (MPB) as the BNZ concentration increased and by adjusting the K/Na ratio. High remnant polarization (Pr = 24 μC/cm2), piezoelectric coefficient (d33 = 320 pC/N), effective piezocoefficient (d*33 = 420 pm/V), coupling coefficient (kp = 48%), and high strain (S = 0.168%) were obtained at room temperature, but significant deterioration of Pr, d*33, and kp were observed by increasing from room temperature to 160°C (17.5 μC/cm2, 338 pm/V, and 32%, respectively) associated with a transition to a purely T phase. Despite these compositions showing promise for room-temperature applications, the deterioration in properties as a function of increasing temperature poses challenges for device design and remains to be resolved.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics. Academic Press, London, New York City, New York, 1971.
    • 2G. H. Haertling, “Ferroelectric Ceramics: History and Technology,” J. Am. Ceram. Soc., 82, 797-818 (1999).
    • 3D. Damjanovic, “Ferroelectric, Dielectric and Piezoelectric Properties of Ferroelectric Thin Films and Ceramics,” Rep. Prog. Phys., 61, 1267-324 (1998).
    • 4T. R. Shrout and S. Zhang, “Lead-Free Piezoelectric Ceramics: Alternatives for PZT,” J. Electroceram., 19, 113-26 (2007).
    • 5R. Guo, L. E. Cross, S. -E. Park, B. Noheda, D. E. Cox, and G. Shirane, “Origin of the High Piezoelectric Response in PbZr1-xTixO3,” Phys. Rev. Lett., 84, 5423-6 (2000).
    • 6EU-Directive 2002/96/EC, “Waste Electrical and Electronic Equipment (WEEE),” Off. J. Eur. Union, 46, 24-38 (2003).
    • 7EU-Directive 2002/95/EC, “Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS),” Off. J. Eur. Union, 46, 19-23 (2003).
    • 8J. Ro€del, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, “Transferring Lead-Free Piezoelectric Ceramics Into Application,” J. Eur. Ceram. Soc., 35, 1659-81 (2015).
    • 9M. D. Maeder, D. Damjanovic, and N. Setter, “Lead Free Piezoelectric Materials,” J. Electroceram., 13, 385-92 (2004).
    • 10J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, “Perspective on the Development of Lead-Free Piezoceramics,” J. Am. Ceram. Soc., 92, 1153-77 (2009).
    • 11A. Safari and M. Abazari, “Lead-Free Piezoelectric Ceramics and Thin Films,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57, 2165-76 (2010).
    • 12T. Takenaka and H. Nagata, “Current Status and Prospects of Lead-Free Piezoelectric Ceramics,” J. Eur. Ceram. Soc., 25, 2693-700 (2005).
    • 13D. Q. Xiao, J. G. Wu, L. Wu, J. G. Zhu, P. Yu, et al., “Investigation on the Composition Design and Properties Study of Perovskite Lead Free Piezoelectric Ceramics,” J. Mater. Sci., 19, 5408-19 (2009).
    • 14P. K. Panda, “Review: Environmental Friendly Lead-Free Piezoelectric Materials,” J. Mater. Sci., 44, 5049-62 (2009).
    • 15J. G. Wu, D. Q. Xiao, and J. G. Zhu, “Potassium-Sodium Niobate LeadFree Piezoelectric Materials: Past, Present, and Future of Phase Boundaries,” Chem. Rev., 115, 2559-95 (2015).
    • 16J. F. Li, K. Wang, F. Y. Zhu, L. Q. Cheng, and F. Z. Yao, “(K,Na) NbO3-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges,” J. Am. Ceram. Soc., 96, 3677-96 (2013).
    • 17L. Egerton and D. M. Dillon, “Piezoelectric and Dielectric Properties of Ceramics in the System Potassium Sodium Niobate,” J. Am. Ceram. Soc., 42, 438-42 (1959).
    • 18Y. Saito, H. Takao, T. Tami, T. Nonoyama, K. Takatori, et al., “LeadFree Piezoceramics,” Nature, 432, 84-7 (2004).
    • 19E. Cross, “Lead-Free at Last,” Nature, 432, 24-5 (2004).
    • 20E. Ringaard and T. Wurlitzer, “Lead-Free Piezoceramics Based on Alkali Niobates,” J. Eur. Ceram. Soc., 25, 2701-7 (2005).
    • 21K. Wang and J. F. Li, “Low-Temperature Sintering of Li-Modified (K, Na)NbO3 Lead-Free Ceramics: Sintering Behavior, Microstructure, and Electrical Properties,” J. Am. Ceram. Soc., 93, 1101-7 (2010).
    • 22Y. L. Wang, D. Damjanovic, N. Klein, and N. Setter, “High-Temperature Instability of Li- and Ta-Modified (K, Na)NbO3 Piezoceramics,” J. Am. Ceram. Soc., 91, 1962-70 (2008).
    • 23T. A. Skidmore and S. J. Milne, “Phase Development During MixedOxide Processing of a [Na0.5K0.5NbO3]1-x-[LiTaO3]x Powder,” J. Mater. Res., 22, 2265-336 (2007).
    • 24S. Zhang, H. J. Lee, C. Ma, and X. Tan, “Sintering Effect on Microstructure and Properties of (K,Na)NbO3 Ceramics,” J. Am. Ceram. Soc., 94, 3659- 65 (2011).
    • 25Y. Guo, K. Kakimoto, and H. Ohsato, “Phase Transitional Behavior and Piezoelectric Properties of Na0.5K0.5NbO3-LiNbO3 Ceramics,” Appl. Phys. Lett., 85, 4121-3 (2004).
    • 26M. Matsubara, T. Yamaguchi, K. Kikuta, and S. Hirano, “Effect of Li Substitution on the Piezoelectric Properties of Potassium Sodium Niobate Ceramics,” Jpn. J. Appl. Phys., 44, 6136-42 (2005).
    • 27S. Zhang, R. Xia, and T. R. Shrout, “Modified Na0.5K0.5NbO3 Based Lead-Free Piezoelectrics With Broad Temperature Usage Range,” Appl. Phys. Lett., 91, 132913, 3pp (2007).
    • 28E. K. Akdogan, K. Kerman, M. Abazari, and A. Safari, “Origin of High Piezoelectric Activity in Ferroelectric (K0.44Na0.52Li0.04)-(Nb0.84Ta0.1Sb0.06)O3 Ceramics,” Appl. Phys. Lett., 92, 112908, 3pp (2008).
    • 29Z. P. Yang, Y. F. Chang, and L. L. Wei, “Phase Transitional Behavior and Electrical Properties of Lead-Free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 Piezoelectric Ceramics,” Appl. Phys. Lett., 90, 042911, 3pp (2007).
    • 30K. Wang, and J. F. Li, “Domain Engineering of Lead-Free Li-Modified (K,Na)NbO3 Polycrystals With Highly Enhanced Piezoelectricity,” Adv. Funct. Mater., 20, 1924-9 (2010).
    • 31P. Zhao, B. P. Zhang, and J. F. Li, “High Piezoelectric d33 Coefficient in Li-Modified Lead-Free (Na,K)NbO3 Ceramics Sintered at Optimal Temperature,” Appl. Phys. Lett., 90, 242909, 3pp (2007).
    • 32D. M. Lin, K. W. Kwok, K. H. Lam, and H. L. W Chan, “Structure and Electrical Properties of Na0.5K0.5NbO3-LiSbO3 Lead-Free Piezoelectric Ceramics,” J. Appl. Phys., 101, 074111, 6pp (2007).
    • 33R. P. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, and M. Itoh, “Tuning the Orthorhombic-Rhombohedral Phase Transition Temperature in Sodium Potassium Niobate by Incorporating Barium Zirconate,” Phys. Status Solidi RRL, 3, 142-4 (2009).
    • 34B. Y. Zhang, J. G. Wu, X. P. Wang, X. J. Cheng, J. G. Zhu, and D. Q. Xiao, “Rhombohedral-Orthorhombic Phase Coexistence and Electrical Properties of Ta and BaZrO3 Co-Modified (K, Na)NbO3 Lead-Free Ceramics,” Curr. Appl. Phys., 13, 1647-50 (2013).
    • 35R. Zuo, D. Lv, J. Fu, Y. Liu, and L. Li, “Phase Transition and Electrical Properties of Lead Free (Na0.5K0.5)NbO3-BiAlO3 Ceramics,” J. Alloys Compd, 476, 836-9 (2009).
    • 36H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, et al., “Design and Electrical Properties Investigation of (Na0.5K0.5)NbO3-BiMeO3 Lead-Free Piezoelectric Ceramics,” J. Appl. Phys., 104, 034104, 7pp (2008).
    • 37C. Zhang, Z. Chen, W. Jia, L. Wang, Y. B. Chen, et al., “Crystal Structures and Electrical Properties of (1-x)Na0.5K0.5NbO3-XBi0.8La0.2FeO3 LeadFree Ceramics,” J. Alloys Compd, 509, 2425-9 (2011).
    • 38W. F. Liang, W. J. Wu, D. Q. Xiao, J. M. Zhu, J. G. Zhu, and J. G. Wu, “New Crystallographic Dielectric Phase Boundary in Na0.5K0.5NbO3-Based Lead-Free Ceramics,” Phys. Status Solidi RRL, 5, 220-2 (2011).
    • 39R. Z. Zuo, and J. Fu, “Rhombohedral-Retragonal Phase Coexistence and Piezoelectric Properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 Lead-Free Ceramics,” J. Am. Ceram. Soc., 94, 1467-70 (2011).
    • 40R. Z. Zuo, J. Fu, S. B. Lu, and Z. K. Xu, “Normal to Relaxor Ferroelectric Transition and Domain Morphology Evolution in (K,Na)(Nb,Sb)O3- LiTaO3-BaZrO3 Lead-Free Ceramics,” J. Am. Ceram. Soc., 94, 4352-7 (2011).
    • 41J. Fu, R. Z. Zuo, S. C. Wu, J. Z. Jiang, L. Li, et al., “Electric Field Induced Intermediate Phase and Polarization Rotation Path in Alkaline Niobate Based Piezoceramics Close to the Rhombohedral and Tetragonal Phase Boundary,” Appl. Phys. Lett., 100, 122902, 5pp (2012).
    • 42B. Y. Zhang, J. G. Wu, X. J. Cheng, X. P. Wang, D. Q. Xiao, et al., “Lead-Free Piezoelectrics Based on Potassium Sodium Niobate With Giant d33,” ACS Appl. Mater. Interfaces, 5, 7718-25 (2013).
    • 43C. Liu, D. Q. Xiao, T. Huang, J. G. Wu, F. X. Li, et al., “Composition Induced Rhombohedral-Tetragonal Phase Boundary in BaZrO3 Modified (K0.445Na0.50Li0.055)NbO3 Lead-Free Ceramics,” Mater. Lett., 120, 275-8 (2014).
    • 44X. P. Wang, J. G. Wu, D. Q. Xiao, J. G. Zhu, X. J. Cheng, et al., “Giant Piezoelectricity in Potassium-Sodium Niobate Lead-Free Ceramics,” J. Am. Chem. Soc., 136, 2905-10 (2014).
    • 45X. P. Wang, T. Zheng, J. G. Wu, D. Q. Xiao, J. G. Zhu, et al., “Characteristics of Giant Piezoelectricity Around the Rhombohedral-Tetragonal Phase Boundary in (K,Na)NbO3-Based Ceramics With Different Additives,” J. Mater. Chem. A, 3, 15951-61 (2015).
    • 46T. Zheng, J. G. Wu, D. Q. Xiao, and J. G. Zhu, “Strong Piezoelectricity in (1-x)(K0.4Na0.6)(Nb0.96Sb0.04)O3 XBi0.5K0.5Zr1 ySnyO3 Lead-Free Binary System: Identification and Role of Multiphase Coexistence,” ACS Appl. Mater. Interfaces, 7, 5927-37 (2015).
    • 47T. Zheng, J. G. Wu, D. Q. Xiao, J. G. Zhu, X. J. Wang, and X. J. Lou, “Potassium-Sodium Niobate Lead-Free Ceramics: Modified Strain as Well as Piezoelectricity,” J. Mater. Chem. A, 3, 1868-74 (2015).
    • 48J. S. Zhou, K. Wang, F. Z. Yao, T. Zheng, J. G. Wu, et al., “Multi-Scale Thermal Stability of Niobate-Based Lead-Free Piezoceramics With Large Piezoelectricity,” J. Mater. Chem. C, 3, 8780-7 (2015).
    • 49Y. Y. Wang, L. Hu, Q. L. Zhang, and H. Yang, “Phase Transition Characteristics and Associated Piezoelectricity of Potassium-Sodium Niobate LeadFree Ceramics,” Dalton Trans., 44, 13688-99 (2015).
    • 50Z. Wang, D. Q. Xiao, J. G. Wu, M. Xiao, F. X. Li, and J. G. Zhu, “New Lead-Free (Na0.5K0.5)NbO3-X(Bi0.5Na0.5)ZrO3 Ceramics With High Piezoelectricity,” J. Am. Ceram. Soc., 97, 688-90 (2014).
    • 51Standards Committee of the IEEE Ultrasonics, Ferroelectrics and Frequency Control Society, “IEEE Standard on Piezoelectricity”. American National Standards Institute, New York City, New York, 1987.
    • 52S. Zhang, E. F. Alberta, R. E. Eitel, C. A. Randall, and T. R. Shrout, “Elastic, Piezoelectric, and Dielectric Characterization of Modified BiScO3- PbTiO3 Ceramics,” IEEE Trans. Ultrasonics, Ferroelectr. Freq. Control, 52, 2131-9 (2005).
    • 53C. Larson and R. B. Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Report LAUR, Los Alamos, 2004.
    • 54H. Toby, “EXPGUI, a Graphical User Interface for GSAS,” J. Appl. Cryst, 34, 210-3 (2001).
    • 55K. Kakimoto, K. Akao, Y. Guo, and H. Ohsato, “Raman Scattering Study of Piezoelectric (Na0.5K0.5)NbO3-LiNbO3 Ceramics,” Jpn. J. Appl. Phys., 44, 7064-7 (2005).
    • 56Z. Y. Liu, H. Q. Fan, and M. M. Li, “High Temperature Stable Dielectric Properties of (K0.5Na0.5)0.985Bi0.015Nb0.99Cu0.01O3 Ceramics With Core-Shell Microstructures,” J. Mater. Chem. C, 3, 5851-8 (2015).
    • 57A. Khesro, R. Boston, I. Sterianou, D. C. Sinclair, and I. M. Reaney, “Phase Transitions, Domain Structure, and Pseudosymmetry in La- and TiDoped BiFeO3,” J. Appl. Phys., 119, 054101, 8pp (2016).
    • 58I. Levin, and I. M. Reaney, “Nano- and Mesoscale Structure of Na1/2Bi1/ 2T5iO9I3.: LAevTinE,MI.PMers.pRecetaivnee,y”, AEd.v.-MFu.ncAt.nMtona,terW.,.22Jo,,34J4.5R-5o2de(2l,01e2t)a.l., “Local Structure, Pseudosymmetry, and Phase Transitions in Na1/2Bi1/2TiO3-K1/2Bi1/ 2T6iO0C3.CAe.raRmaincsd,a”llP,hNy.s.KRiemv., BJ., K87u,c0e2ra4,11W3,. 1C1apop, (a2n0d13T).. R. Shrout, “Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics,” J. Am. Ceram. Soc., 81, 677-88 (1998).
    • 61D. Wang, M. Cao, and S. Zhang, “Investigation of Ternary System PbHfO3-PbTiO3-Pb(Mg1/3Nb2/3)O3 With Morphotropic Phase Boundary Compositions,” J. Am. Ceram. Soc., 95, 3220-8 (2012).
    • 62F. Chen, Y. H. Li, G. Y. Gao, F. Z. Yao, K. Wang, et al., “Intergranular Stress Induced Phase Transition in CaZrO3 Modified KNN-Based Lead-Free Piezoelectrics,” J. Am. Ceram. Soc., 98, 1372-6 (2015).
    • 63Y. Qin, J. Zhang, Y. Tan, W. Yao, C. Wang, and S. Zhang, “Domain Configuration and Piezoelectric Properties of (K0.50Na0.50)1-xLix(Nb0.80Ta0.20) O3 Ceramics,” J. Eur. Ceram. Soc., 34, 4177-84 (2014).
    • 64S. Zhang, R. Xia, L. Lebrun, D. Anderson, and T. R. Shrout, “Piezoelectric Materials for High Power, High Temperature Applications,” Mater. Lett., 59, 3471-5 (2005). h
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    2bi1Protein Data Bank

Share - Bookmark

Funded by projects

Cite this article