Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ward, Jonathan S.; Morgan, Rebecca; Lynam, Jason M.; Fairlamb, Ian J S; Moir, James W B (2017)
Languages: English
Types: Article
Subjects: 1303, 3003
The potential for carbon monoxide-releasing molecules (CO-RMs) as antimicrobials represents an exciting prospective in the fight against antibiotic resistance. Trypto-CORM, a tryptophan-containing manganese(i) carbonyl, is toxic against E. coli following photo-activation. Here, we demonstrate that Trypto-CORM is toxic against Neisseria gonorrhoeae in the absence of photoactivation. Trypto-CORM toxicity was reversed by the high CO affinity globin leg-haemoglobin (Leg-Hb), indicating that the toxicity is due to CO release. Release of CO from Trypto-CORM in the dark was also detected with Leg-Hb (but not myoglobin) in vitro. N. gonorrhoeae is more sensitive to CO-based toxicity than other model bacterial pathogens, and may serve as a viable candidate for antimicrobial therapy using CO-RMs.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 S. T. Omaye, Toxicology, 2002, 180, 139.
    • 2 L. D. Prockop, and R. I. Chichkova, J. Neurolog. Sci., 2007, 262, 122.
    • 3 T. Sjostrand, Acta Physiolog. Scand., 1952, 26, 338-344.
    • 4 N. G. Abraham, and A. Kappas, Pharmacol. Rev., 2008, 60, 79.
    • 5 J. Kohmoto, A. Nakao, D. B. Stolz, T. Kaizu, A. Tsung, A. Ikeda, H. Shimizu, T. Takahashi, K. Tomiyama, R. Sugimoto, A. M. K. Choi, T. R. Billiar, N. Murase, and K. R. McCurry, Amer. J. Transplant., 2007, 7, 2279.
    • 6 S. W. Ryter, J. Alam, and A. M. Choi, Physiological Rev., 2006, 86, 583.
    • 7 R. Motterlini, L. E. Otterbein, Drug Discovery, 2010, 9, 728.
    • 8 K. S. Davidge, G. Sanguinetti, C. H. Yee, A. G. Cox, C. W. McLeod, C. E. Monk, B. E. Mann, R. Motterlini, and R. K. Poole, J. Biol. Chem., 2009, 284, 4516.
    • 9 M. Desmard, R. Foresti, D. Morin, M. Dagouassat, A. Berdeaux, E. Denamur, S. H. Crook, B. E. Mann, D. Scapens, P. Montravers, J. Boczkowski, and R. Motterlini, Antioxid. Redox Sig., 2012, 16, 153.
    • 10 H. E.Jesse, T. L. Nye, S. McLean, J. Green, B. E. Mann, R. K. Poole, Biochim. Biophys. Acta, 2013, 1834, 1693-1703.
    • 11 L. S. Nobre, J. D. Seixas, C. C. Romao, and L. M. Saraiva, Antimicrobial Agents Chemother., 2007, 51, 4303.
    • 12 H. Smith, B. E. Mann, R. Motterlini, R. K. Poole, IUBMB life, 2011, 63, 363.
    • 13 A. F. Tavares, M. R. Parente, M. C. Justino, M. Oleastro, L. S. Nobre, and L. M. Saraiva, PloS one, 2013, 8, e83157.
    • 14 A. F. Tavares, L. S. Nobre, and L. M. Saraiva, FEMS Microbiol. Lett., 2012, 336, 1.
    • 15 T. R. Johnson, B. E. Mann, J. E. Clark, R. Foresti, C. J. Green, and R. Motterlini, Angew. Chem. Int. Ed., 2003, 42, 3722.
    • 16 S. Romanski, B. Kraus, U. Schatzschneider, J. M. Neudorfl, S. Amslinger, and H. G. Schmalz, Angew. Chem. Int. Ed., 2011, 50, 2392.
    • 17 C. Bischof, T. Joshi, A. Dimri, L. Spiccia, and U. Schatzschneider, Inorg. Chem., 2013, 52, 9297.
    • 18 R. Kretschmer, G. Gessner, H. Gorls, S. H. Heinemann, and M. Westerhausen, J. Inorg. Biochem., 2011, 105, 6.
    • 19 H. Pfeiffer, A. Rojas, J. Niesel, and U. Schatzschneider, Dalton Trans., 2009, 4292.
    • 20 R. D. Rimmer, H. Richter, P. C. Inorg. Chem., 2010, 49, 1180.
    • 21 J. S. Ward, J. M. Lynam, J. W. Moir, D. E. Sanin, A. P. Mountford, and I. J. S. Fairlamb, Dalton Trans., 2012, 41, 10514.
    • 22 C. Nagel, S. McLean, R. K. Poole, H. Braunschweig, T. Kramer, and U. Schatzschneider, Dalton Trans., 2014, 43, 9986.
    • 23 J. S. Ward, J. M. Lynam, J. W. Moir, and I. J. S. Fairlamb, Chem. Eur. J., 2014, 20, 15061.
    • 24 V. G. Allen, L. Mitterni, C. Seah, A. Rebbapragada, I. E. Martin, C. Lee, H. Siebert, L. Towns, R. G> Melano, D. E. Low., JAMA, 2013, 309, 163.
    • 25 D. Golparian, B. Hellmark, H. Fredlund, and M. Unemo, Sexually Transmitted Infections, 2010, 86, 454.
    • 26 K. Shimuta, M. Unemob, S.-i. Nakayamaa, T. MoritaIshiharaa, M. Dorina, T. Kawahatac, and M. Ohnishia, Antimicrob. Agents Chemother., 2013, 57, 5225.
    • 27 T. Imamura, and A. Riggs, J. Biol. Chem., 1972, 247, 521-526.
    • 28 B. A. Wittenberg, M. Brunori, E. Antonini, J. B. Wittenberg, J. Wyman, Archives Biochem. Biophys., 1965, 111, 576.
    • 29 A. J. Atkin, J. M. Lynam, B. E. Moulton, P. Sawle, R. Motterlini, N. M. Boyle, M. T. Pryce, and I. J. S. Fairlamb, Dalton Trans., 2011, 40, 5755.
    • 30 T. Imamura, and A. Riggs, J. Biol. Chem., 1972, 247, 521.
    • 31 E. S. Rittershaus, S. H. Baek, and C. M. Sassetti, Cell Host Microbe, 2013, 13, 643.
    • 32 L. S. Nobre, H. Jeremias, C. C. Romão, and L. M. Saraiva, Dalton Trans., 2016, 45, 1455.
    • 33 S. García-Gallego, and G. J. L. Bernardes, Angew. Chem. Int. Ed., 2014, 53, 9712.
    • 34 D. K. Jones, R. Badii, F. I. Rosell, and E. Lloyd, Biochem. J., 1998, 330 (Pt 2), 983.
    • 35 D. Bonsor, S. F. Butz, J. Solomons, S. Grant, I. J. S. Fairlamb, M. J. Fogg, and G. Grogan, Org. Biomol. Chem., 2006, 4, 1252.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article