Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Smith, Martin R.
Languages: English
Types: Doctoral thesis

Classified by OpenAIRE into

mesheuropmc: sense organs, genetic structures, eye diseases
Age-related macular degeneration and cataract are very common causes of visual impairment in the elderly. Macular pigment optical density is known to be a factor affecting the risk of developing age-related macular degeneration but its behaviour due to light exposure to the retina and the effect of macular physiology on this measurement are not fully understood. Cataract is difficult to grade in a way which reflects accurately the visual status of the patient. A new technology, optical coherence tomography, which allows a cross sectional slice of the crystalline lens to be imaged has the potential to be able to provide objective measurements of cataract which could be used for grading purposes. This thesis set out to investigate the effect of cataract removal on macular pigment optical density, the relationship between macular pigment optical density and macular thickness and the relationship between cortical cataract density as measured by optical coherence tomography and other measures of cataract severity. These investigations found: 1) Macular pigment optical density in a pseudophakic eye is reduced when compared to a fellow eye with age related cataract, probably due to differences in light exposure between the eyes. 2) Lower macular pigment optical density is correlated with thinning of the entire macular area, but not with thinning of the fovea or central macula. 3) Central macular thickness decreases with age. 4) Spectral domain optical coherence tomography can be used to successfully acquire images of the anterior lens cortex which relate well to slit lamp lens sections. 5) Grading of cortical cataract with spectral domain optical coherence tomography instruments using a wavelength of 840nm is not well correlated with other established metrics of cataract severity and is therefore not useful as presented as a grading method for this type of cataract.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ho, A.C., Maguire, M.G., Yoken, J., Lee, M.S., Shin, D.S., Javornik, N.B., Fine, S.L., 1999. Laser-induced drusen reduction improves visual function at 1 year. Ophthalmology 106, 1367 -1374. doi:10.1016/S0161-6420(99)00735-6
    • Ho, J., Sull, A.C., Vuong, L.N., Chen, Y., Liu, J., Fujimoto, J.G., Schuman, J.S., Duker, J.S., 2009. Assessment of Artifacts and Reproducibility across Spectral - and Time-Domain Optical Coherence Tomography Devices. Ophthalmology 116, 1960-1970. doi:10.1016/j.ophtha.2009.03.034
    • Hoerauf, H., Gordes, R., Scholz, C., Wirbelauer, C., Koch, P., R, E., J, W., H, L., R, B., 1999. First experimental and clinical results with transscleral optical coherence tomography. Ophthalmic Surg. Lasers 31, 218-222.
    • Holz FG, S.G., 1994. ANalysis of lipid deposits extracted from human macular and peripheral bruch's membrane. Arch. Ophthalmol. 112, 402-406. doi:10.1001/archopht.1994.01090150132035
    • Horgan, N., Condon, P.I., Beatty, S., 2005. Refractive lens exchange in high myopia: long term follow up. Br. J. Ophthalmol. 89, 670-672. doi:10.1136/bjo.2004.052720
    • Howells, O., Eperjesi, F., Bartlett, H., 2011. Measuring macular pigment optical density in vivo: a review of techniques. Graefes Arch. Clin. Exp. Ophthalmol. 249, 315-347. doi:10.1007/s00417-010-1577-5
    • Howells, O., Eperjesi, F., Bartlett, H., 2013a. Macular Pigment Optical Density in Young Adults of South Asian Origin. Invest. Ophthalmol. Vis. Sci. 54, 2711-2719. doi:10.1167/iovs.12-10957
    • Howells, O., Eperjesi, F., Bartlett, H., 2013b. Improving the repeatability of heterochromatic flicker photometry for measurement of macular pigment optical density. Graefes Arch. Clin. Exp. Ophthalmol. 251, 871-880. doi:10.1007/s00417-012-2127-0
    • Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., Et, A., 1991. Optical coherence tomography. Science 254, 1178- 1181. doi:10.1126/science.1957169
    • Huang, J., Liu, X., Wu, Z., Guo, X., Xu, H., Dustin, L., Sadda, S., 2011. Macular and Retinal Nerve Fiber Layer Thickness Measurements in Normal Eyes With the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000. J. Glaucoma 20, 118-125. doi:10.1097/IJG.0b013e3181d786f8
    • Iannaccone, A., Mura, M., Gallaher, K.T., Johnson, E.J., Todd, W.A., Kenyon, E., Harris, T.L., Harris, T., Satterfield, S., Johnson, K.C., Kritchevsky, S.B., 2007. Macular Pigment Optical Density in the Elderly: Findings in a Large Biracial Midsouth Population Sample. Invest. Ophthalmol. Vis. Sci. 48, 1458-1465. doi:10.1167/iovs.06-0438
    • Igras, E., Loughman, J., Ratzlaff, M., O'Caoimh, R., O'Brien, C., 2013. Evidence of lower macular pigment optical density in chronic open angle glaucoma. Br. J. Ophthalmol. bjophthalmol - 2013-303153. doi:10.1136/bjophthalmol-2013-303153
    • Izatt, J., Hee, M., Swanson, E., Lin, C., Huang, D., Schuman, J., Puliafito, C., Fujimoto, J., 1994. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch. Ophthalmol. 112, 1584-1589.
    • Jager, R.D., Mieler, W.F., Miller, J.W., 2008. Age-Related Macular Degeneration. N. Engl. J. Med. 358, 2606-2617. doi:10.1056/NEJMra0801537
    • Jonas, J.B., Schneider, U., Naumann, G.O.H., 1992. Count and density of human retinal photoreceptors. Graefes Arch. Clin. Exp. Ophthalmol. 230, 505-510. doi:10.1007/BF00181769
    • Kanis, M.J., Berendschot, T.T.J.M., van Norren, D., 2007. Interocular agreement in melanin and macular pigment optical density. Exp. Eye Res. 84, 934-938. doi:10.1016/j.exer.2007.01.020
    • Kara-Junior, N., Espindola, R.F., Gomes, B.A.F., Ventura, B., Smadja, D., Santhiago, M.R., 2011. Effects of blue light-filtering intraocular lenses on the macula, contrast sensitivity, and color vision after a long-term follow-up. J. Cataract Refract. Surg. 37, 2115-2119. doi:10.1016/j.jcrs.2011.06.024
    • Klein, R., Klein, B.E.K., Knudtson, M.D., Meuer, S.M., Swift, M., Gangnon, R.E., 2007. Fifteen-Year Cumulative Incidence of Age-Related Macular Degeneration: The Beaver Dam Eye Study. Ophthalmology 114, 253-262. doi:10.1016/j.ophtha.2006.10.040
    • Klein, R., Peto, T., Bird, A., Vannewkirk, M.R., 2004. The epidemiology of age -related macular degeneration. Am. J. Ophthalmol. 137, 486-495. doi:10.1016/j.ajo.2003.11.069
    • Kuroda, T., Fujikado, T., Maeda, N., Oshika, T., Hirohara, Y., Mihashi, T., 2002. Wavefront analysis in eyes with nuclear or cortical cataract. Am. J. Ophthalmol. 134, 1-9. doi:10.1016/S0002- 9394(02)01402-2
    • Lai, J.C., Lapolice, D.J., Stinnett, S.S., Meyer, C.H., Arieu, L.M., Keller, M.A., Toth, C.A., 2002. Visual outcomes following macular translocation with 360° peripheral retinectomy. Arch. Ophthalmol. 120, 1317-1324.
    • Lakshminarayana, R., Aruna, G., Sangeetha, R.K., Bhaskar, N., Divakar, S., Baskaran, V., 2008. Possible degradation/biotransformation of lutein in vitro and in vivo: isolation and structural elucidation of lutein metabolites by HPLC and LC-MS (atmospheric pressure chemical ionization). Free Radic. Biol. Med. 45, 982-993. doi:10.1016/j.freeradbiomed.2008.06.011
    • Lamb, T.D., Collin, S.P., Pugh, E.N., 2007. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat. Rev. Neurosci. 8, 960-976. doi:10.1038/nrn2283
    • Landrum, J.T., Bone, R.A., 2001. Lutein, Zeaxanthin, and the Macular Pigment. Arch. Biochem. Biophys. 385, 28-40. doi:10.1006/abbi.2000.2171
    • Landrum, J.T., bone, R.A., Joa, H., Kilburn, M.D., Moore, L.L., Sprague, K.E., 1997. A One Year Study of the Macular Pigment: The Effect of 140 Days of a Lutein Supplement. Exp. Eye Res. 65, 57- 62. doi:10.1006/exer.1997.0309
    • Lee, J., Taylor, H., 1989. The lens opacity meter: a method of quantification of lens opacity by measurement of scattering of incident light. Lens Eye Toxic. Res. 7, 31-38.
    • Lee, M., Yoo, H., Ahn, J., 2013. Comparison of Disc Analysis Algorithms Provided by Cirrus OCT and Stereo Optic-disc Photography in Normal and Open Angle Glaucoma Patients. Curr. Eye Res. 38, 605-613. doi:10.3109/02713683.2013.769059
    • Lengyel, I., Tufail, A., Hosaini, H.A., Luthert, P., Bird, A.C., Jeffery, G., 2004. Association of Drusen Deposition with Choroidal Intercapillary Pillars in the Aging Human Eye. Invest. Ophthalmol. Vis. Sci. 45, 2886-2892. doi:10.1167/iovs.03-1083
    • Lerman, S., Borkman, R., 1976. Spectroscopic Evaluation and Classification of the Normal, Aging, and Cataractous Lens. (With 1 color plate). Ophthalmic Res. 8, 335-353. doi:10.1159/000264841
    • Lerman, S., Yamanashi, B.S., Palmer, R.A., Roark, J.C., Borkman, R., 1978. Photoacoustic, Fluorescence and Light Transmission Spectra of Normal, Aging and Cataractous Lenses. Ophthalmic Res. 10, 168-176. doi:10.1159/000264951
    • Leung, C.K.-S., Weinreb, R.N., 2011. Anterior chamber angle imaging with optical coherence tomography. Eye 25, 261-267. doi:10.1038/eye.2010.201
    • Li, B., Vachali, P., Bernstein, P.S., 2010. Human ocular carotenoid-binding proteins. Photochem. Photobiol. Sci. 9, 1418. doi:10.1039/c0pp00126k
    • Li, P., An, L., Lan, G., Johnstone, M., Malchow, D., Wang, R.K., 2013. Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate. J. Biomed. Opt. 18, 016012- 016012. doi:10.1117/1.JBO.18.1.016012
    • Li, Y., Shekhar, R., Huang, D., 2006. Corneal Pachymetry Mapping with High-speed Optical Coherence Tomography. Ophthalmology 113, 792-799.e2. doi:10.1016/j.ophtha.2006.01.048
    • Liew, S.H.M., Gilbert, C.E., Spector, T.D., Mellerio, J., Kuijk, F.J.V., Beatty, S., Fitzke, F., Marshall, J., Hammond, C.J., 2006. Central retinal thickness is positively correlated with macular pigment optical density. Exp. Eye Res. 82, 915-920. doi:10.1016/j.exer.2005.10.014
    • Linetsky, M., James, H.-L., Ortwerth, B.J., 1996. The generation of superoxide anion by the UVA irradiation of human lens proteins. Exp. Eye Res. 63, 67-74. doi:10.1006/exer.1996.0092
    • Romano, G., Mercatelli, L., Fusi, F., Guasti, A., Favuzza, E., Monici, M., Mencucci, R., 2011. Colorimetric comparison of light-filtering intraocular lenses and human crystalline lenses at various ages. J. Cataract Refract. Surg. 37, 758-762. doi:10.1016/j.jcrs.2010.10.053
    • Ruffolo Jr., J.J., Ham Jr., W.T., Mueller, H.A., Millen, J.E., 1984. Photochemical lesions in the primate retina under conditions of elevated blood oxygen. Invest. Ophthalmol. Vis. Sci. 25, 893-898.
    • Sabour-Pickett, S., Nolan, J.M., Loughman, J., Beatty, S., 2012. A review of the evidence germane to the putative protective role of the macular carotenoids for age-related macular degeneration. Mol. Nutr. Food Res. 56, 270-286. doi:10.1002/mnfr.201100219
    • Sample, P.A., Esterson, F.D., Weinreb, R.N., Boynton, R.M., 1988. The aging lens: in vivo assessment of light absorption in 84 human eyes. Invest. Ophthalmol. Vis. Sci. 29, 1306 -1311.
    • Sarks, S.H., 1980. Council Lecture. Drusen and their relationship to senile macular degeneration. Aust. J. Ophthalmol. 8, 117-130.
    • Sasaki, M., Yuki, K., Kurihara, T., Miyake, S., Noda, K., Kobayashi, S., Ishida, S., Tsubota, K., Ozawa, Y., 2012. Biological role of lutein in the light-induced retinal degeneration. J. Nutr. Biochem. 23, 423-429. doi:10.1016/j.jnutbio.2011.01.006
    • Sasamoto, Y., Gomi, F., Sawa, M., Sakaguchi, H., Tsujikawa, M., Nishida, K., 2011. Effect of cataract in evaluation of macular pigment optical density by autofluorescence spectrometry. Invest. Ophthalmol. Vis. Sci. 52, 927-932. doi:10.1167/iovs.10-5664
    • Schaft, T.L. van der, Mooy, C.M., Bruijn, W.C. de, Mulder, P.G., Pameyer, J.H., Jong, P.T. de, 1994. Increased prevalence of disciform macular degeneration after cataract extraction with implantation of an intraocular lens. Br. J. Ophthalmol. 78, 441-445. doi:10.1136/bjo.78.6.441
    • Schlatterer, J., Breithaupt, D.E., 2006. Xanthophylls in Commercial Egg Yolks:  Quantification and Identification by HPLC and LC-(APCI)MS Using a C30 Phase. J. Agric. Food Chem. 54, 2267- 2273. doi:10.1021/jf053204d
    • Schraermeyer, U., Heimann, K., 1999. Current Understanding on the Role of Retinal Pigment Epithelium and its Pigmentation. Pigment Cell Res. 12, 219-236. doi:10.1111/j.1600- 0749.1999.tb00755.x
    • Schütt, F., Davies, S., Kopitz, J., Holz, F.G., Boulton, M.E., 2000. Photodamage to Human RPE Ce lls by A2-E, a Retinoid Component of Lipofuscin. Invest. Ophthalmol. Vis. Sci. 41, 2303-2308.
    • Sharifzadeh, M., Zhao, D.-Y., Bernstein, P.S., Gellermann, W., 2008. Resonance Raman imaging of macular pigment distributions in the human retina. J. Opt. Soc. Am. A 25, 947-957. doi:10.1364/JOSAA.25.000947
    • Siems, W.G., Sommerburg, O., van Kuijk, F.J.G.M., 1999. Lycopene and \beta-carotene decompose more rapidly than lutein and zeaxanthin upon exposure to various pro-oxidants in vitro. BioFactors 10, 105-113.
    • Silvestri, G., Johnston, P.B., Hughes, A.E., 1994. Is genetic predisposition an important risk factor in age-related macular degeneration? Eye 8, 564-568. doi:10.1038/eye.1994.138
    • Simons, K., 1993. Artificial light and early-life exposure in age-related macular degeneration and in cataractogenic phototoxicity. Arch. Ophthalmol. 111, 297-298.
    • Snodderly, D.M., Auran, J.D., Delori, F.C., 1984. The macular pigment. II. Spatial distribution in primate retinas. Invest. Ophthalmol. Vis. Sci. 25, 674-685.
    • Snodderly, D.M., Mares, J.A., Wooten, B.R., Oxton, L., Gruber, M., Ficek, T., CAREDS Macular Pigment Study Group, 2004. Macular pigment measurement by heterochromatic flicker photometry in older subjects: the carotenoids and age-related eye disease study. Invest. Ophthalmol. Vis. Sci. 45, 531-538.
    • Sommerburg, O., Keunen, J.E.E., Bird, A.C., Kuijk, F.J.G.M. van, 1998. Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. Br. J. Ophthalmol. 82, 907-910. doi:10.1136/bjo.82.8.907
    • Song, W.K., Lee, S.C., Lee, E.S., Kim, C.Y., Kim, S.S., 2010. Macular Thickness Variations with Sex, Age, and Axial Length in Healthy Subjects: A Spectral Domain-Optical Coherence Tomography Study [WWW Document]. URL http://www.iovs.org (accessed 9.16.13).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article