OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Liu, Chong; Ray, Surajit; Hooker, Giles (2017)
Publisher: Springer Nature
Journal: Statistics and Computing
Languages: English
Types: Article
Subjects: Theoretical Computer Science, Computational Theory and Mathematics, Statistics, Probability and Uncertainty, HA, Statistics and Probability
This paper focuses on the analysis of spatially correlated functional data. We propose a parametric model for spatial correlation and the between-curve correlation is modeled by correlating functional principal component scores of the functional data. Additionally, in the sparse observation framework, we propose a novel approach of spatial principal analysis by conditional expectation to explicitly estimate spatial correlations and reconstruct individual curves. Assuming spatial stationarity, empirical spatial correlations are calculated as the ratio of eigenvalues of the smoothed covariance surface Cov (Xi(s),Xi(t))(Xi(s),Xi(t)) and cross-covariance surface Cov (Xi(s),Xj(t))(Xi(s),Xj(t)) at locations indexed by i and j. Then a anisotropy Matérn spatial correlation model is fitted to empirical correlations. Finally, principal component scores are estimated to reconstruct the sparsely observed curves. This framework can naturally accommodate arbitrary covariance structures, but there is an enormous reduction in computation if one can assume the separability of temporal and spatial components. We demonstrate the consistency of our estimates and propose hypothesis tests to examine the separability as well as the isotropy effect of spatial correlation. Using simulation studies, we show that these methods have some clear advantages over existing methods of curve reconstruction and estimation of model parameters.

Share - Bookmark

Funded by projects

  • NSF | CMG: Functional Data Modeli...

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok