Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Butterfield, N. J.
Languages: English
Types: Article
Subjects: sub-04
The fossil record documents two mutually exclusive macroevolutionary modes separated by the transitional Ediacaran Period. Despite the early appearance of crown eukaryotes and an at least partially oxygenated atmosphere, the pre-Ediacaran biosphere was populated almost exclusively by microscopic organisms exhibiting low diversity, no biogeographical partitioning and profound morphological/evolutionary stasis. By contrast, the post-Ediacaran biosphere is characterized by large diverse organisms, bioprovinciality and conspicuously dynamic macroevolution. The difference can be understood in terms of the unique escalatory coevolution accompanying the early Ediacaran introduction of eumetazoans, followed by their early Cambrian (Tommotian) expansion into the pelagic realm. Eumetazoans reinvented the rules of macroecology through their invention of multitrophic food webs, large body size, life-history trade-offs, ecological succession, biogeography, major increases in standing biomass, eukaryote-dominated phytoplankton and the potential for mass extinction. Both the pre-Ediacaran and the post-Ediacaran biospheres were inherently stable, but the former derived from the simplicity of superabundant microbes exposed to essentially static, physical environments, whereas the latter is based on eumetazoan-induced diversity and dynamic, biological environments. The c. 100-myr Ediacaran transition (extending to the base of the Tommotian) can be defined on evolutionary criteria, and might usefully be incorporated into the Phanerozoic.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • B E R N E Y , C. and P A W L O W S K I , J. 2006. A molecular timescale for eukaryote evolution recalibrated with the continuous microfossil record. Proceedings of the Royal Society of London B, 273, 1867-1872.
    • -- F A H R N I , J. and P A W L O W S K I , J. 2004. How many novel eukaryotic 'kingdoms'? Pitfalls and limitations of environmental DNA surveys. BMC Biology, 2, doi: 10.1186/1741- 7007-2-13.
    • B J E R R U M , C. J. and C A N F I E L D , D. E. 2002. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature, 417, 159-162.
    • B L A C K W E L L , M. and J O N E S , K. 1997. Taxonomic diversity and interactions of insect-associated ascomycetes. Biodiversity and Conservation, 6, 689-699.
    • B O N S A L L , M. B., J A N S E N , V. A. A. and H A S S E L L , M. P. 2004. Life history trade-offs assemble ecological guilds. Science, 306, 11-114.
    • B R A S I E R , M. D. 1992. Nutrient-enriched waters and the early skeletal fossil record. Journal of the Geological Society, London, 149, 621-629.
    • B R E T T , C. E., I V A N Y , L. C. and S C H O P F , K. M. 1996. Coordinated stasis: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 127, 1-20.
    • B R O C K S , J. J., L O G A N , G. A., B U I C K , R. and S U M - M O N S , R. E. 1999. Archean molecular fossils and the early rise of eukaryotes. Science, 285, 1033-1036.
    • B R O W N , J. H. 1995. Macroecology. University of Chicago Press, Chicago, IL, 269 pp.
    • -- G I L L O O L Y , J. F., A L L E N , A. P., S A V A G E , V. M. and W E S T , G. B. 2004. Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
    • B U D D , G. E. and J E N S E N , S. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75, 253-295.
    • B U T T E R F I E L D , N. J. 1997. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology, 23, 247-262.
    • -- 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity and the Mesoproterozoic-Neoproterozoic radiation of eukaryotes. Paleobiology, 26, 386-404.
    • -- 2001a. Ecology and evolution of the Cambrian plankton. 200-216. In Z H U R A V L E V , A. Yu and R I D I N G , R. (eds). Ecology of the Cambrian radiation. Columbia University Press, New York, NY, 525 pp.
    • -- 2001b. Cambrian food webs. 40-43. In B R I G G S , D. E. G. and C R O W T H E R , P. R. (eds). Palaeobiology II, a synthesis. Blackwell Scientific, Oxford, 583 pp.
    • -- 2003. Exceptional fossil preservation and the Cambrian Explosion. Integrative and Comparative Biology, 43, 166-177.
    • -- 2004. A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology, 30, 231-252.
    • -- 2005a. Reconstructing a complex early Neoproterozoic eukaryote, Wynniatt Formation, arctic Canada. Lethaia, 38, 155-169.
    • -- 2005b. Probable Proterozic fungi. Paleobiology, 31, 165- 182.
    • -- and C H A N D L E R , F. W. 1992. Paleoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island. Palaeontology, 35, 943- 957.
    • -- and R A I N B I R D , R. H. 1998. Diverse organic-walled microfossils, including 'possible dinoflagellates', from the early Neoproterozoic of arctic Canada. Geology, 26, 963-966.
    • -- K N O L L , A. H. and S W E T T , K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34, 84 pp.
    • C A N F I E L D , D. E. and T E S K E , A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382, 127- 132.
    • C A R R O L L , S. B. 2001. Chance and necessity: the evolution of morphological complexity and diversity. Nature, 409, 1102- 1109.
    • C A T L I N G , D. C., G L E I N , C. R., Z A H N L E , K. J. and M c K A Y , C. P. 2005. Why O2 is required by complex life on habitable planets and the concept of planetary 'oxygenation time'. Astrobiology, 5, 414-438.
    • C A V A L I E R - S M I T H , T. 2002. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. International Journal of Systematic and Evolutionary Microbiology, 52, 7-76.
    • -- 2006. Cell evolution and Earth history: stasis and revolution. Philosophical Transactions of the Royal Society of London, B, 361, 969-1006.
    • C O H E N , J. E., J O N S S O N , T. and C A R P E N T E R , S. R. 2003. Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences, USA, 100, 1781-1786.
    • D E S M A R A I S , D. J. et al. 2003. The NASA Astrobiology roadmap. Astrobiology, 3, 219-235.
    • D I L C H E R , D. 2000. Toward a new synthesis: major evolutionary trends in the angiosperm fossil record. Proceedings of the National Academy of Sciences, USA, 97, 7030-7036.
    • D I M I C H E L E , W. A., B E H R E N S M E Y E R , A. K., O L S Z E W S K I , T. D., L A B A N D E I R A , C. C., P A N D - O L F I , J. M., W I N G , S. L. and B O B E , R. 2004. Long-term stasis in ecological assemblages: evidence from the fossil record. Annual Review of Ecology, Evolution and Systematics, 35, 285-322.
    • D U F F Y , J. E. 2002. Biodiversity and ecosystem function: the consumer connection. Oikos, 99, 201-219.
    • D U T K I E W I C Z , A., V O L K , H., G E O R G E , S. C., R I D L E Y , J. and B U I C K , R. 2006. Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geology, 34, 437-440.
    • E L S E R , J. J., D O B B E R F U H L , D., M A C K A Y , N. A. and S C H A M P E L , J. H. 1996. Organism size, life history, and N: P stoichiometry: towards a unified view of cellular and ecosystem processes. Bioscience, 46, 674-684.
    • -- W A T T S , J., S C H A M P E L , J. H. and F A R M E R , J. 2006. Early Cambrian food webs on a trophic knife-edge? A hypothesis and preliminary data from a modern stromatolite-based ecosystem. Ecology Letters, 9, 295-303.
    • E R W I N , D. H. 2000. Macroevolution is more than repeated rounds of microevolution. Evolution and Development, 2, 78- 84.
    • F E D O N K I N , M. A. 2003. The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontological Research, 7, 9-41.
    • F E N S T E R , C. B., A R M B R U S T E R , W. S., W I L S O N , P., D U D A S H , M. R. and T H O M S O N , J. D. 2004. Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution and Systematics, 35, 375-403.
    • F I N L A Y , B. J. 2002. Global dispersal of free-living microbial eukaryote species. Science, 296, 1061-1063.
    • -- M A B E R L Y , S. C. and C O O P E R , J. I. 1997. Microbial diversity and ecosystem function. Oikos, 80, 209-213.
    • F O R T E Y , R. A., B R I G G S , D. E. G. and W I L L S , M. A. 1996. The Cambrian evolutionary 'explosion': decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society, 57, 13-33.
    • G N I L O V S K A Y A , M. B. 1990. Vendotaenids-Vendian metaphytes. 138-147. In S O K O L O V , B. S. and I W A N O W S K I , A. B. (eds). The Vendian System, volume 1, Paleontology. Springer-Verlag, Berlin, 383 pp.
    • G O D F R A Y , H. C. J. and L A W T O N , J. H. 2001. Scale and species numbers. Trends in Ecology and Evolution, 16, 400- 404.
    • G O G A R T E N , J. P., D O O L I T T L E , W. F. and L A W R E N C E , J. G. 2002. Prokaryotic evolution in light of gene transfer. Molecular Biology and Evolution, 19, 2226-2238.
    • G O U L D , S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology, 11, 2-12.
    • G R A Z H D A N K I N , D. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology, 30, 203-221.
    • G R E E N , J. and B O H A N N A N , B. J. M. 2006. Spatial scaling of microbial biodiversity. Trends in Ecology and Evolution, 21, 501-507.
    • -- H O L M E S , A. J., W E S T O B Y , M., O L I V E R , I., B R I S C O E , D., D A N G E R F I E L D , M., G I L L I N G S , M. and B E A T T I E , A. J. 2004. Spatial scaling of microbial eukaryote diversity. Nature, 432, 747-750.
    • G R E Y , K. 2005. Ediacaran palynology of Australia. Association of Australasian Palaeontologists, Memoir, 31, 439 pp.
    • -- W A L T E R , M. R. and C A L V E R , C. R. 2003. Neoproterozoic biotic diversification: snowball earth or aftermath of the Acraman impact? Geology, 31, 459-462.
    • H A M M , C. E., M E R K E L , R., S P R I N G E R , O., J U R K O J C , P., M A I E R , C., P R E C H T E L , K. and S M E T A C E K , V. 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature, 421, 841-843.
    • H A R L I N , M. M. 1995. Changes in major plant groups following nutrient enrichment. 173-187. In M c C O M B , A. J. (ed.). Eutrophic shallow estuaries and lagoons. CRC Press, Boca Raton, FL, 240 pp.
    • H E D G E S , S. B., B L A I R , J. E., V E N T U R I , M. L. and S H O E , J. L. 2004. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evolutionary Biology, 4(2), doi: 10.1186 ⁄ 1471-2148-4-2.
    • H O F F M A N , P. F., K A U F M A N , A. J., H A L V E R S O N , G. P. and S C H R A G , D. P. 1998. A Neoproterozoic snowball earth. Science, 281, 1342-1346.
    • H O F M A N N , H. J. 1976. Precambrian microflora, Belcher Islands, Canada: significance and systematics. Journal of Paleontology, 50, 1040-1073.
    • -- 1999. Global distribution of the Proterozoic sphaeromorph acritarch Valeria lophostriata (Jankauskas). Acta Micropalaeontologica Sinica, 16, 215-224.
    • -- N A R B O N N E , G. M. and A I T K E N , J. D. 1990. Ediacaran remains from intertillite beds in northwestern Canada. Geology, 18, 1199-1202.
    • H O R N E R - D E V I N E , M. C., L A G E , M., H U G H E S , J. B. and B O H A N N A N , B. J. M. 2004. A taxa-area relationship for bacteria. Nature, 432, 750-753.
    • H O U , X.-G., A L D R I D G E , R. J., B E R G S T R O¨ M , J., S I V E T E R , D A V I D . J., S I V E T E R , D E R E K , J. and F E N G , X.-G. 2004. The Cambrian fossils of Chengjiang, China. Blackwell Science, Malden, MA, 233 pp.
    • H U A , H., P R A T T , B. R. and Z H A N G , L.-Y. 2003. Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic. Palaios, 18, 454-459.
    • H U N T L E Y , J. W., X I A O , S. and K O W A L E W S K I , M. 2006. 1.3 Billion years of acritarch history: an empirical morphospace approach. Precambrian Research, 144, 52-68.
    • H U T C H I N S O N , G. E. 1959. Homage to Santa Rosalia or Why are there so many kinds of animals? American Naturalist, 93, 145-159.
    • J A B L O N S K I , D. 2000. Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. In Paleobiology, 26 (Supplement to No. 4, E R W I N , D. H. and W I N G , S. L. eds, Deep time, Paleobiology's perspective), 15-52.
    • -- 2005. Mass extinctions and macroevolution. Paleobiology, 31, 192-210.
    • J A K O B S E N , H. H. 2002. Escape of protists in predatorgenerated feeding currents. Aquatic Microbial Ecology, 26, 271-281.
    • J A V A U X , E. J., K N O L L , A. H. and W A L T E R , M. R. 2003. Recognizing and interpreting the fossils of early eukaryotes. Origins of Life and Evolution of the Biosphere, 33, 75-94.
    • J E N S E N , S. 2003. The Proterozoic and earliest Cambrian trace fossil record; patterns, problems and perspectives. Integrative and Comparative Biology, 43, 219-228.
    • J I A N G , L., S C H O F I E L D , O. M. E. and F A L K O W S K I , P. G. 2005. Adaptive evolution of phytoplankton cell size. American Naturalist, 166, 496-505.
    • J U M A R S , P. A., M A Y E R , L. M., D E M I N G , J. W., B A R O S S , J. A. and W H E A T C R O F T , R. A. 1990. Deep-sea deposit-feeding strategies suggested by environmental and feeding constraints. Philosophical Transactions of the Royal Society of London, A, 331, 85-101.
    • K A U F M A N , A. J., K N O L L , A. H. and A W R A M I K , S. M. 1992. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: upper Tindir Group, northwestern Canada, as a test case. Geology, 20, 181- 185.
    • K E R R , S. R. and D I C K I E , L. M. 2001. The biomass spectrum. A predator-prey theory of aquatic production. Columbia University Press, New York, NY, 320 pp.
    • K H O M E N T O V S K I I , V. V. and K A R L O V A , G. A. 2005. The Tommotian Stage base as the Cambrian lower boundary in Siberia. Stratigraphy and Geological Correlation, 13, 21-34.
    • K I Ø R B O E , T., S A I Z , E. and V I I T A S A L O , M. 1996. Prey switching behaviour in the planktonic copepod Acartia tonsa. Marine Ecology Progress Series, 143, 65-75.
    • K N O L L , A. H. 1992. The early evolution of eukaryotes: a geological perspective. Science, 256, 622-627.
    • -- 1994. Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proceedings of the National Academy of Sciences, USA, 91, 6743-6750.
    • -- J A V A U X , E. J., H E W I T T , D. and C O H E N , P. 2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society of London, B, 361, 1023- 1038.
    • -- W A L T E R , M. R., N A R B O N N E , G. M. and C H R I S - T I E - B L I C K , N. 2006. The Ediacaran Period: a new addition to the geological time scale. Lethaia, 39, 13-30.
    • K O E H L , M. A. R. 1996. When does morphology matter? Annual Review of Ecology and Systematics, 27, 501-542.
    • K U M A R , S. 1995. Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan Supergroup), Katni area, central India. Precambrian Research, 72, 171-184.
    • -- 2001. Mesoproterozoic megafossil Chuaria-Tawuia association may represent parts of a multicellular plant, Vindyan Supergroup, central India. Precambrian Research, 106, 187- 211.
    • K U R L A N D , C. G., C O L L I N S , L. J. and P E N N Y , D. 2006. Genomics and the irreducible nature of eukaryote cells. Science, 312, 1011-1014.
    • L E H M A N , C. L. and T I L M A N , D. 2000. Biodiversity, stability, and productivity in competitive communities. American Naturalist, 156, 534-552.
    • L E R O I , A. M. 2000. The scale independence of evolution. Evolution and Development, 2, 66-77.
    • L I E B E R M A N , B. S. 2002. Phylogenetic analysis of some basal Early Cambrian trilobites, the biogeographic origins of the Eutrilobita, and the timing of the Cambrian Radiation. Journal of Paleontology, 76, 692-708.
    • L I N E W E A V E R , C. H. and D A V I S , T. M. 2002. Does the rapid appearance of life on earth suggest that life is common in the universe? Astrobiology, 2, 293-304.
    • L O G A N , G. A., H A Y E S , J., M . H I E S H I M A , G. B. and S U M M O N S , R. E. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature, 376, 53-56.
    • L Y N C H , M. and C O N E R Y , J. S. 2003. The origins of genome complexity. Science, 302, 1401-1404.
    • M A R S H A L L , C. R. 2006. Explaining the Cambrian 'explosion' of animals. Annual Review of Earth and Planetary Sciences, 34, 355-384.
    • M A R T I´ N , H. G. and G O L D E N F E L D , N. 2006. On the origin and robustness of power-law species-area relationships in ecology. Proceedings of the National Academy of Sciences, USA, 103, 10,310-10,315.
    • M A R T I N , M. W. G R A Z H D A N K I N , D. V. B O W R I N G , S. A. E V A N S , D. A. D. F E D O N K I N , M. A. and K I R S - C H V I N K , J. L. 2000. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science, 288, 841-845.
    • M A U R E R , B. A. 2003. Adaptive diversification of body size: the roles of physical constraint, energetics and natural selection. 174-191. In B L A C K B U R N , T. M. and G A S T O N , K. J. (eds). Macroecology: concepts and consequences. Blackwell Science, Oxford, 442 pp.
    • M A Y , R. M. 1973. Stability and complexity in model ecosystems. Princeton University Press, Princeton, NJ, 235 pp.
    • -- 1994. Biological diversity: differences between land and sea. Philosophical Transactions of the Royal Society of London, B, 343, 105-111.
    • M C C A N N , K. 2000. The diversity-stability debate. Nature, 405, 228-233.
    • M c I L R O Y , D. and L O G A N , G. A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic-Cambrian transition. Palaios, 14, 58-72.
    • M c S H E A , D. W. 1996. Metazoan complexity and evolution: is there a trend? Evolution, 50, 477-492.
    • M E N G E , B. A. 1995. Indirect effects in marine rocky intertidal interaction webs: patterns and importance. Ecological Monographs, 65, 21-74.
    • M O R E I R A , D. and L O´ P E Z - G A R C I´ A , P. 2002. The molecular ecology of microbial eukaryotes unveils a hidden world. Trends in Microbiology, 10, 31-38.
    • N A E E M , S. and L I , S. 1998. Consumer species richness and autotrophic biomass. Ecology, 79, 2603-2615.
    • N A G A N U M A , T. 1996. Calanoid copepods: linking lowerhigher trophic levels by linking lower-higher Reynolds numbers. Marine Ecology Progress Series, 136, 311-313.
    • N A R B O N N E , G. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33, 421-442.
    • N O R R I S , R. D. 2000. Pelagic species diversity, biogeography, and evolution. In Paleobiology, 26 (Supplement to No. 4, E R W I N , D. H. and W I N G , S. L. eds, Deep time, Paleobiology's perspective), 236-258.
    • O D U M , E. P. 1969. The strategy of ecological development. Science, 164, 262-270.
    • P A R S O N S , P. A. 1993. Developmental variability and the limits of adaptation: interactions with stress. Genetica, 89, 245-253.
    • P A Y N E , J. L. and F I N N E G A N , S. 2006. Controls on marine animal biomass through geological time. Geobiology, 4, 1-10.
    • P E T E R S , S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences, USA, 102, 12,326-12,331.
    • P E T E R S O N , K. J. and B U T T E R F I E L D , N. J. 2005. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences, USA, 102, 9547-9552.
    • P H I L I P P E , H., L O P E Z , H., B R I N K M A N N , H., B U D I N , K., G E R M O T , A., L A U R E N T , J., M O R E I R A , D., M U¨ L L E R , M. and G U Y A D E R , H. 2000. Early branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proceedings of the Royal Society of London, B, 267, 1213-1221.
    • P O O L E , A. M., P H I L L I P S , M. J. and P E N N Y , D. 2003. Prokaryote and eukaryote evolvability. Biosystems, 69, 163- 185.
    • P O R T E R , S. M., M E I S T E R F E L D , R. and K N O L L , A. H. 2003. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. Journal of Paleontology, 77, 409-429.
    • R A S M U S S E N , B., B E N G T S O N , S., F L E T C H E R , I. R. and M c N A U G H T O N , N. J. 2002. Discoidal impressions and trace-like fossils more than 1200 million years old. Science, 296, 1112-1115.
    • R O O P N A R I N E , P. D. 2006. Extinction cascades and catastrophe in ancient food webs. Paleobiology, 32, 1-19.
    • R O S E N Z W E I G , M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge, 436 pp.
    • -- 2001. The four questions: what does the introduction of exotic species do to diversity? Evolutionary Ecology Research, 3, 361-367.
    • R O S S E L L O´ - M O R A , R. and A M A N N , R. 2001. The species concept for prokaryotes. FEMS Microbiology Reviews, 25, 39-67.
    • R U N N E G A R , B. 1982. The Cambrian explosion - animals or fossils? Journal of the Geological Society of Australia, 29, 395- 411.
    • S C H O P F , J. W. 1994. Disparate rates, differing fates - tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proceedings of the National Academy of Sciences, USA, 91, 6735-6742.
    • -- 2006. Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society of London, B, 361, 869-885.
    • S C H W I N G H A M E R , P. 1983. Generating ecological hypotheses from biomass spectra using causal analysis: a benthic example. Marine Ecology Progress Series, 13, 151-166.
    • S E I L A C H E R , A., B O S E , P. K. and P F L U¨ G E R . F. 1998. Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science, 282, 80-83.
    • S E P K O S K I , J. J. Jr 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology, 10, 246-267.
    • S E U S S , D. 1954. Horton hears a who. Random House, New York, NY, 72 pp.
    • S H E L D O N , R. W., P R A K A S H , A. and S U T C L I F F E , W. H. 1972. The size distribution of particles in the ocean. Limnology and Oceanography, 17, 327-340.
    • S I N H A , S. and S I N H A , S. 2005. Evidence of universality for the May - Wigner stability theorem for random networks with local dynamics. Physical Review E, 71, doi 10.1103 ⁄ PhysRevE.71.020902.
    • S M I T H , V. H., F O S T E R , B. L., G R O V E R , J. P., H O L T , R. D., L E I B O L D , M. A. and D E N O Y E L L E S , F. Jr 2005. Phytoplankton species richness scales consistently from laboratory microcosms to the world's oceans. Proceedings of the National Academy of Sciences, USA, 102, 4393- 4396.
    • S O G I N , M. L., M O R R I S O N , H. G., H U B E R , J. A., W E L C H , D. M., H U S E , S. M., N E A L , P. R., A R R I E T A , J. M. and H E R N D L , G. J. 2006. Microbial diversity in the deep sea and the underexplored ''rare biosphere''. Proceedings of the National Academy of Sciences, USA, 103, 12,115- 12,120.
    • S O L E´ , R. V., M O N T O Y A , J. M. and E R W I N , D. H. 2002. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. Philosophical Transactions of the Royal Society of London, B, 357, 697-707.
    • S U M M O N S , R. E., J A H N K E , L. L., H O P E , J. M. and L O G A N , G. A. 1999. 2-methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554- 557.
    • T H I N G S T A D , T. F. 1998. A theoretical approach to structuring mechanisms in the pelagic food web. Hydrobiologia, 363, 59-72.
    • T I L M A N , D., R E I C H , P. B. and K N O P S , J. M. H. 2006. Biodiversity and ecosystem stability in a decade long grassland experiment. Nature, 441, 629-632.
    • T O M I T A N I , A., K N O L L , A. H., C A V A N A U G H , C. M. and O H N O , T. 2006. The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proceedings of the National Academy of Sciences, USA, 103, 5442-5447.
    • V E R I T Y , P. G. and S M E T A C E K , V. 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Marine Ecology Progress Series, 130, 277-293.
    • V E R M E I J , G. J. 1989. The origin of skeletons. Palaios, 4, 585- 589.
    • -- 1994. The evolutionary interaction among species: selection, escalation, and coevolution. Annual Review of Ecology and Systematics, 25, 219-236.
    • V I D A L , G. and K N O L L , A. H. 1982. Radiations and extinctions of plankton in the late Proterozoic and early Cambrian. Nature, 297, 57-60.
    • -- and M O C Z Y D L O W S K A - V I D A L , M. 1997. Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology, 23, 230-246.
    • W A L T E R , M. R., D U , R. and H O R O D Y S K I , R. J. 1990. Coiled carbonaceous megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana. American Journal of Science, 290-A, 133-148.
    • W A S S M A N N , P. 1998. Retention versus export food chains: processes controlling sinking loss from marine pelagic systems. Hydrobiologia, 363, 29-57.
    • W H I T M A N , W. B., C O L E M A N , D. C. and W I E B E , W. J. 1998. Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences, USA, 95, 6578-6583.
    • W I L L I S , J. C. 1926. Age and area. Quarterly Review of Biology, 1, 553-571.
    • W O O D C O C K , S., C U R T I S , T. P., H E A D , I. M., L U N N , M. and S L O A N , W. T. 2006. Taxa-area relationships for microbes: the unsampled and the unseen. Ecology Letters, 9, 805-812.
    • W O R M , B. and D U F F Y , J. E. 2003. Biodiversity, productivity and stability in real food webs. Trends in Ecology and Evolution, 18, 628-632.
    • X I A O , S. 2002. Mitotic topologies and mechanics of Neoproterozoic algae and animal embryos. Paleobiology, 28, 244-250.
    • -- Y U A N , X., S T E I N E R , M. and K N O L L , A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, south China. Journal of Paleontology, 76, 347- 376.
    • Z A N G , W. and W A L T E R , M. R. 1992. Late Proterozoic and Early Cambrian microssils and biostratigraphy, Amadeus Basin, central Australia. Association of Australasian Palaeontologists, Memoir, 12, 132 pp.
    • Z H A N G , Y., Y I N , L., X I A O , S. and K N O L L , A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Paleontological Society Memoir, 50, 1-52 [Journal of Paleontology Supplement 72 (4)].
    • Z H U R A V L E V , A. Yu 2001. Biotic diversity and structure during the Neoproterozoic-Ordovician transition. 173-199. In Z H U R A V L E V , A. Yu and R I D I N G , R. (eds). Ecology of the Cambrian radiation. Columbia University Press, New York, NY, 525 pp.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article