LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mhatre, S.; Vivacqua, V.; Ghadiri, M.; Abdullah, A.M.; Al-Marri, M.J.; Hassanpour, A.; Hewakandamby, Buddhika N.; Azzopardi, Barry J.; Kermani, B. (2015)
Publisher: Elsevier
Journal: Chemical Engineering Research and Design
Languages: English
Types: Article
Subjects: Chemistry(all), Chemical Engineering(all)
The current understanding and developments in the electrostatic phase separation are reviewed. The literature covers predominantly two immiscible and inter-dispersed liquids following the last review on the topic some 15 years. Electrocoalescence kinetics and governing parameters, such as the applied field, liquid properties, drop shape and flow, are considered. The unfavorable effects, such as chain formation and partial coalescence, are discussed in detail. Moreover, the prospects of microfluidics platforms, non-uniform fields, coalescence on the dielectric surfaces to enhance the electrocoalescence rate are also considered. In addition to the electrocoalescence in water-in-oil emulsions the research in oil-in-oil coalescence is also discussed. Finally the studies in electrocoalescer development and commercial devices are also surveyed.\ud \ud The analysis of the literature reveals that the use of pulsed DC and AC electric fields is preferred over constant DC fields for efficient coalescence; but the selection of the optimum field frequency a priori is still not possible and requires further research. Some recent studies have helped to clarify important aspects of the process such as partial coalescence and drop–drop non-coalescence. On the other hand, some key phenomena such as thin film breakup and chain formation are still unclear. Some designs of inline electrocoalescers have recently been proposed; however with limited success: the inadequate knowledge of the underlying physics still prevents this technology from leaving the realm of empiricism and fully developing in one based on rigorous scientific methodology.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abeynaike, A., Sederman, A.J., Khan, Y., Johns, M.L., Davidson, J.F., Mackley, M.R., 2012. The experimental measurement and modeling of sedimentation and creaming for glycerol/ biodiesel droplet dispersions. Chem. Eng. Sci. 79, 125-137.
    • Adamiak, K., 1999. Force of attraction between two conducting droplets in electric field. Thirty-Fourth I.A.C. Annual Meeting IEEE 3, 1795-1800.
    • Adamiak, K., 2001. Interaction of two dielectric or conducting droplets aligned in the uniform electric field. J. Electrostat. 51, 578-584.
    • Aida, K., Na, Y., Nagaya, T., Orihara, H., 2010. Droplet coalescence process under electric fields in an immiscible polymer blend. Phys. Rev. E 82, 031805.
    • Allan, R.S., Mason, S.G., 1961. Effects of electric fields on coalescence in liquid-liquid systems. J. Chem. Soc., Faraday Trans. 57 (11), 2027-2040.
    • Allan, R.S., Mason, S.G., 1962. Particle motions in sheared suspensions: XIV. coalescence of liquid drops in electric and shear fields. J. Colloid Sci. 17, 383-408.
    • Al-Sabagh, A.M., Kandile, N.G., El-Din, M.R.N., 2011. Functions of demulsifiers in the petroleum industry. Sep. Sci. Technol. 46 (7), 1144-1163.
    • Aryafar, H., Kavehpour, H.P., 2006. Drop coalescence through planar surfaces. Phys. Fluids 18, 072105-072106.
    • Aryafar, H., Kavehpour, P., 2007. Electrocoalescence. Phys. Fluids 19, 091107.
    • Aryafar, H., Kavehpour, H.P., 2009. Electrocoalescence: effects of dc electric fields on coalescence of drops at planar interfaces. Langmuir 25, 12460-12465.
    • Aryafar, H., Kavehpour, H.P., 2010. Electrocoalescence fireworks. Phys. Fluids 22, 091103.
    • Atten, P., Aitken, F., 2007. Electrocoalescence criterion for two close water drops. In: IEEE-IAS 42nd-IAS-Annual-Meeting, p. 2007.
    • Atten, P., Aitken, F., 2010. Electrocoalescence criterion for two close anchored water drops and estimate for pairs of drops in a field. IEEE Trans. Ind. Appl. 46 (4).
    • Atten, P., Aitken, F., Koulova-Nenova, D., June, 2005. Field-induced deformation and disruption of a planar water-oil interface under the influence of a conducting sphere. In: Dielectric Liquids, 2005. ICDL 2005 IEEE International Conference on, pp. 165-168.
    • Atten, P., Lundgaard, L., Berg, G., 2006. A simplified model of electrocoalescence of two close water droplets in oil. J. Electrostat. 64, 550-554.
    • Atten, P., Raisin, J., Reboud, J., June, 2008. Field induced disruption of a planar water-oil interface influenced by a close metallic sphere. In: Dielectric Liquids, 2008. ICDL IEEE International Conference on, pp. 1-4.
    • Atten, P., 1993. Electrocoalescence of water droplets in an insulating liquid. J. Electrostat. 30, 259-270.
    • Atten, P., 2005. Critical conditions for electrically induced coalescence of two very close water droplets in oil. In: IEEE-ICDL, pp. 177-180.
    • Atten, P., 2012. Electrohydrodynamics of dispersed drops of conducting liquid: from drop deformation and interaction to emulsion evolution. In: Proceedings of the International Symposium on Electrohydrodynamics, Gda n´sk, Poland, September, 2012.
    • Bailes, P.J., Kuipa, P.K., 2001. The effect of air sparging on the electrical resolution of water-in-oil emulsions. Chem. Eng. Sci. 56, 6279-6284.
    • Bailes, P.J., Larkai, S.K.L., 1981. An experimental investigation into the use of high voltage d.c. fields for liquid phase separation. Trans. IChemE 59, 229-237.
    • Barnocky, G., Davis, R.H., 1989. The lubrication force between spherical drops, bubbles and rigid particles in a viscous fluid. Int. J. Multiphase Flow 15, 627-638.
    • Baygent, J.C., Rivette, N.J., Stone, H.A., 1998. Electrohydrodynamic deformation and interaction of drop pairs. J. Fluid Mech. 368, 359-375.
    • Berg, T.G.O., Fernish, G.C., Gaukler, T.A., 1963. The mechanism of coalescence of liquid drops. J. Atmos Sci. 20, 153-158.
    • Berg, G., Lundgaard, L.E., Abi-Chebel, N., 2010. Electrically stressed water drops in oil. Chem. Eng. Process. 49, 1229-1240.
    • Bezemer, C., Croes, G.A., 1955. Motion of water droplets of an emulsion in a non-uniform field. Br. J. Appl. Phys. 6, 224.
    • Bird, J.C., Ristenpart, W.D., Belmonte, A., Stone, H.A., 2009. Critical angle for electrically driven coalescence of two conical droplets. Phys. Rev. Lett. 103, 164502.
    • Bjorklund, E., 2009. The level-set method applied to droplet dynamics in the presence of an electric field. Comput. Fluids 38, 358-369.
    • Blanchette, F., Bigioni, T.P., 2006. Partial coalescence of drops at liquid interfaces. Nat. Phys. 2, 254-257.
    • Block, H., Kelly, J.P., 1988. Electro-rheology. J. Phys. D: Appl. Phys. 21, 1661-1677.
    • Brazier-Smith, P.R., Jennings, S.G., Latham, J., 1971. An investigation of the behaviour of drops and drop-pairs subjected to strong electrical forces. Proc. R. Soc. Lond. A 325, 363-376.
    • Brazier-Smith, P.R., 1971. Stability and shape of isolated and pairs of water drops in electric field. Phys. Fluids 14 (1).
    • Chabert, M., Dorfman, K.D., Viovy, J.-L., 2005a. Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis 26, 3706-3715.
    • Chabert, M., Dorfman, K.D., Viovy, J.-L., 2005b. Contamination-free droplet fusion and continuous flow PCR. In: Micro Total Analysis Systems-Proceedings of MicroTAS 2005 Conference: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 115-117.
    • Charles, G.E., Mason, S.G., 1960a. The coalescence of liquid drops with flat liquid/liquid interfaces. J. Colloid Sci. 15, 236-267.
    • Charles, G.E., Mason, S.G., 1960b. The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. J. Colloid Sci. 15, 105-122.
    • Chen, T.Y., Mohammed, R.A., Bailey, A.I., Luckham, P.F., Taylor, S.E., 1994. Dewatering of crude oil emulsions, 4. Emulsion resolution by the application of an electric field. Colloids Surf., A: Physicochem. Eng. Aspects 83, 273-284.
    • Chesters, A.K., 1991. The modelling of coalescence processes in fluid-liquid dispersions: a review of current understanding. Chem. Eng. Res. Des. 69, 259-270.
    • Chiesa, J., Melheim, A., Pedersen, A., Ingebrigtsen, S., Berg, G., 2005. Forces acting on water droplets falling in oil under the influence of an electric field: numerical predictions versus experimental observations. Eur. J. Mech. B-Fluid 24, 717-732.
    • Chiesa, M., Ingebrigtsen, S., Melheim, J.A., Hemmingsen, P.V., Hansen, E.B., Hestad, Ø., 2006. Investigation of the role of viscosity on electrocoalescence of water droplets in oil. Sep. Purif. Technol. 50, 267-277.
    • Chokkalingam, V., Ma, Y., Thiele, J., Schalk, W., Telb, J., Huck, W.T.S., 2014. An electro-coalescence chip for effective emulsion breaking in droplet microfluidics. Lab Chip 14, 2398.
    • Cottrell, F.G., Speed, J.B., 1911. Separating and collecting particles of one liquid suspended in another liquid. US Patent, US 987115.
    • Davis, R.H., Schonberg, J.A., Rallison, J.M., 1989. The lubrication force between two viscous drops. Phys. Fluids A-Fluid 1, 77-81.
    • Davis, M.H., 1964. Two charged spherical conductors in a uniform electric field: forces and field strength. Q. J. Mech. Appl. Math. 17, 499-511.
    • Dong, J., de Almeida, V.F., Tsouris, C., 2002. Effects of applied electric fields on drop-interface and drop-drop coalescence. J. Disper. Sci. Technol. 23 (1-3), 155-166.
    • Eow, J.S., Ghadiri, M., 2002a. Electrocoalesce-separators for the separation of aqueous drops from a flowing dielectric viscous liquid. Sep. Purif. Technol. 29, 63-77.
    • Eow, J.S., Ghadiri, M., 2002b. Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology. Chem. Eng. J. 85, 357-368.
    • Eow, J.S., Ghadiri, M., 2003. Drop-drop coalescence in an electric field: the effects of applied electric field and electrode geometry. Colloids Surf., A: Physicochem. Eng. Aspects 219, 253-279.
    • Eow, J.S., Ghadiri, M., Sharif, A.O., Williams, T.J., 2001. Electrostatic enhancement of coalescence of water droplets in oil: a review of the current understanding. Chem. Eng. J. 84, 173-192.
    • Eow, J.S., Ghadiri, M., Sharif, A.O., 2002. Electrostatic and hydrodynamic separation of aqueous drops in a flowing viscous oil. Chem. Eng. Process. 41, 649-657.
    • Eow, J., Ghadiri, M., Sharif, A., 2003. Experimental studies of deformation and break up of aqueous drops in high electric fields. Colloid Surf. 225, 193-210.
    • Eow, J.S., 2002. Electrostatic Enhancement of Coalescence of Water Droplets in Oil. University of Surrey (Ph.D. Thesis).
    • Fernandez, A., 2009. Shear flow of an emulsion of drops less conductive than the suspending fluid immersed in an electric field by numerical simulation. Colloids Surf., A: Physicochem. Eng. Aspects 338, 68-79.
    • Figueroa, C.E., Wagner, J.P., 1997. A liquid membrane approach for removal of metallic species from resinous extracts under imposed electrical fields. Bioresour. Technol. 60, 153.
    • Fjeldly, T.A., Hansen, E.B., Nilsen, P.J., 2006. Novel coalescer technology in first-stage separator enables one-stage separation and heavy-oil separation. In: Proceedings of the Offshore Technology Conference 20063, Houston, TX, May, 2006.
    • Fjeldly, T.A., Hansen, E.B., Nilsen, P.J., 2008. Novel coalescer technology in first-stage separator enables single-stage separation and heavy-oil separation. SPE Projects Facil. Constr. 3 (2).
    • Fordedal, H., Midttun, O., Sjoblom, J., Kvalheim, O.M., Schildberg, Y., Volle, J.-L., 1996. A multivariate screening analysis of w/o emulsions in high external electric fields as studied by means of dielectric time domain spectroscopy, ii model emulsions stabilized by interfacially active fractions from crude oils. J. Colloid Interface Sci. 182, 117-125.
    • Friesen, W.I., Levine, S., 1992. Electrostatic interaction between two water-in-oil emulsion droplets in an electric field. J. Colloid Interface Sci. 150 (2), 517-527.
    • Galinat, S., Masbernat, O., Guiraud, P., Dalmazzone, C., Noik, C., 2005. Drop break-up in turbulent pipe flow downstream of a restriction. Chem. Eng. Sci. 60, 6511-6528.
    • Galvin, C.P., 1986. Design principles for electrical coalescers. IChemE Symp. Ser. 88, 101-113.
    • Ghadiri, M., Martin, C.M., Arteaga, P.A., Tüzün, U., Formisani, B., 2006. Evaluation of the single contact electrical clamping force. Chem. Eng. Sci. 61 (7), 2290-2300.
    • Giljarhus, K.E.T., Munkejord, S.T., 2011. Numerical investigation of electrostatically enhanced coalescence of two drops in a flow field. In: IEEE-ICDL.
    • Gu, H., Duits, M.H.G., Mugele, F., 2011. Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12, 2572-2597.
    • Ha, J.W., Yang, S.M., 1999. Breakup of a multiple emulsion drop in a uniform electric field. J. Colloid Interface Sci. 213, 92-100.
    • Hamlin, B.S., Ristenpart, W.D., 2012. Transient reduction of the drag coefficient of charged droplets via the convective reversal of stagnant caps. Phys. Fluids 24, 012101.
    • Hamlin, B.S., Creasey, J.C., Ristenpart, W.D., 2012. Electrically tunable partial coalescence of oppositely charged drops. Phys. Rev. Lett. 109, 094501.
    • Hannisdal, A., Ese, M.-H., Hemmingsen, P.V., Sjoblom, J., 2006. Particle-stabilized emulsions: effect of heavy crude oil components pre-adsorbed onto stabilizing solids. Colloids Surf., A: Physicochem. Eng. Aspects 276, 45-58.
    • Hano, T., Ohtake, T., Takagi, K., 1988. Demulsification kinetics of w/o emulsion in an ac electric field. J. Chem. Eng. Jpn. 21 (4), 345-351.
    • Holto, J., Berg, G., Lundgaard, L.E., 2009. Electrocoalescence of drops in a water-in-oil emulsion. In: IEEE-ARCEIDP.
    • Honey, E.M., Kavehpour, H.P., 2006. Astonishing life of a coalescing drop on a free surface. Phys. Rev. E 73, 027301.
    • Hosseini, M., Shahavi, M.H., 2012. Electrostatic enhancement of coalescence of oil droplets (in nanometer scale) in water emulsion. Chin. J. Chem. Eng. 20 (4), 654-658.
    • Howe, H.A., Pearce, C.A.R., 1955. Electrical dehydration of tar emulsions. Br. J. Appl. Phys. 6, 68.
    • Hsu, E.C., Li, N.N., 1985. Membrane recovery in liquid membrane separation processes. Sep. Sci. Technol. 20 (2 & 3), 115.
    • Imano, A.M., Beroual, A., 2006. Deformation of water droplets on solid surface in electric field. J. Colloid Interface Sci. 298, 869-879.
    • Ingebrigtsen, S., Berg, G., Lundgaard, L.E., 2005. Electrocoalescence in stagnant emulsions. In: IEEE-ICDL.
    • Jose, B.M., Cubaud, T., 2012. Droplet arrangement and coalescence in diverging/converging microchannels. Microfluid. Nanofluid. 12, 687-696.
    • Jung, Y.-M., Kang, I.-S, 2009. A novel actuation method of transporting droplets by using electrical charging of droplet in a dielectric fluid. Biomicrofluidics 3, 022402.
    • Karyappa, R.B., Deshmukh, S.D., Thaokar, R.M., 2014. Breakup of a conducting drop in a uniform electric field. J. Fluid Mech. 754, 550-589.
    • Kim, B., Moon, J., Sung, T., Yang, S., Kim, J., 2002. Demulsification of water-in-crude oil emulsions by a continuous electrostatic dehydrator. Sep. Sci. Technol. 37 (6), 1307-1320.
    • Klasson, K.T., Taylor, P.A., Walker, J.F., Jones, S.A., Cummins, R.L., Richardson, S.A., 2005. Modification of a centrifugal separator for in-well oil-water separation. Sep. Sci. Technol. 40, 453-462.
    • Klingenberg, D.J., Swol, F., Zukoski, C.F., 1991. The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit. J. Chem. Phys. 94, 6170.
    • Latham, J., Roxburgh, I.W., 1966. Disintegration of pairs of water drops in an electric field. Proc. R. Soc. A 295, 84-97.
    • Lee, C.-M., Sams, G.W., Wagner, J.P., 2001. Power consumption measurements for ac and pulsed dc for electrostatic coalescence of water-in-oil emulsions. J. Electrostat. 53, 1-24.
    • Lesaint, C., Glomm, W.R., Lundgaard, L.E., Sjoblom, J., 2009. Dehydration efficiency of ac electrical fields on water-in-model-oil emulsions. Colloids Surf., A: Physicochem. Eng. Aspects 352, 63-69.
    • Lesaint, C., Spets, Ø., Glomm, W.R., Simon, S., Sjoblom, J., 2010. Dielectric response as a function of viscosity for two crude oils with different conductivities. Colloids Surf., A: Physicochem. Eng. Aspects 369, 20-26.
    • Less, S., Vilagines, R., 2012. The electrocoalescers technology: advances, strengths and limitations for crude oil separation. J. Petrol. Sci. Eng. 81, 57-63.
    • Less, S., Hannisdal, A., Bjorklund, E., Sjoblom, J., 2008. Electrostatic destabilization of water-in-crude oil emulsions: application to a real case and evaluation of the Aibel VIEC technology. Fuel 87, 2572-2581.
    • Levan, D.M., 1981. Motion of droplets with a Newtonian interface. J. Colloid Interface Sci. 83, 11-17.
    • Lin, Y., Skjetne, P., Carlson, A., 2012. A phase field model for multiphase electro-hydrodynamic flow. Int. J. Multiphase Flow 12, 1-11.
    • Link, D.R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M., Weitz, D., 2006. Electric control of droplets in microfluidic devices. Angew. Chem. Int. Ed. 45, 2556-2560.
    • Lukyanets, A.S., Kavehpour, H.P., 2008. Effect of electric fields on the rest time of coalescing drops. Appl. Phys. Lett. 93, 194101.
    • Lundgaard, L.E., Berg, G., Pedersen, A., Nilsen, P.J., 2002. Electrocoalescence of water drop pairs in oil. Dielectric Liquids, 2002. ICDL 2002. Proceedings of 2002 IEEE 14th International Conference, 215-219.
    • Lundgaard, L.E., Berg, G., Ingebrigtsen, S., Atten, P., 2006. Fundamental aspects of electrocoalescence. In: Sjoblom, J. (Ed.), Emulsions and Emulsion Stability. CRC Press, Boca Raton.
    • Mason, T.G., Bobette, J., Weitz, D.A., 1996. Yielding and flow of monodisperse emulsions. J. Colloid Interface Sci. 179, 439-448.
    • Melheim, J.A., Chiesa, M., 2006. Simulation of turbulent electrocoalescence. Chem. Eng. Sci. 61, 4540-4549.
    • Mhatre, S., Thaokar, R., 2014. Pin-plate electrode system for emulsification of a higher conductivity leaky dielectric liquid into a low conductivity medium. Ind. Eng. Chem. Res. 53, 13488-13496.
    • Midtgard, O.-M., 2009. Electrostatic field theory and circuit analysis in the design of coalescers with pulsed dc voltage. Chem. Eng. J. 151, 168-175.
    • Midtgard, O.-M., 2012. Application of circuit theory for extraction of water from oil. Int. J. Circuit Theory Appl. 40, 927-942.
    • Mingyuan, L., Christy, A.A., Sjoblom, J., 1992. Emulsions-A Fundamental and Practical Approach. NATO ASI Ser., vol. 363. Kluwer Academic Publishers, Dordrecht.
    • Mohammed, R.A., Bailey, A.I., Luckham, P.F., Taylor, S.E., 1993. Dewatering of crude oil emulsions, 2. Interfacial properties of the asphaltic constituents of crude oil. Colloids Surf., A: Physicochem. Eng. Aspects 80, 237-242.
    • Mousavi, S.H., Ghadiri, M., Buckley, M., 2014. Electro-coalescence of water drops in oils under pulsatile electric fields. Chem. Eng. Sci. 120, 130-142.
    • Mousavichoubeh, M., Ghadiri, M., Shariaty-Niassar, M., 2011a. Electrocoalescence of an aqueous droplet at an oil-water interface. Chem. Eng. Process. 50, 338-344.
    • Mousavichoubeh, M., Shariaty-Niassar, M., Ghadiri, M., 2011b. The effect of interfacial tension on secondary drop formation in electrocoalescence of water droplets in oil. Chem. Eng. Sci. 66, 5330-5337.
    • Muth, E., 1927. Veber die erscheinung der perleschnurkettenbildung von emulsionspartikelchen unter einwirkung eines wechselfeldes. Kolloidzschr 41, 97.
    • Ndoumbe, J., Beroual, A., Imano, M., 2012. Behavior of water droplets on insulator surfaces submitted to dc voltage-coalescence. In: IEEE-CEIDP 2012, Montreal, QC.
    • Niu, X., Gielen, F., deMello, A.J., Edel, J.B., 2009. Electro-coalescence of digitally controlled droplets. Anal. Chem. 81 (17), 7321-7325.
    • Noik C., Trapy J., 2004. Separation device and method comprising a tubular electrocoalescer. US Patent, US6702947 B2, 9 Mar 2004.
    • Noik, C., Trapy, J., Mouret, A., Laborie, G., 2002. Design of a crude oil dehydration unit. In: SPE Annual Technical Conference and Exhibition.
    • Noik, C., Chen, J., Dalmazzone, C.S.H., January, 2006. Electrostatic demulsification on crude oil: a state-of-the-art review. Soc. Pet. Eng., SPE-103808-PP, 1-12.
    • Panchenkov, G.M., Vinogradov, V.M., 1970. Water-in-oil emulsion in a constant homogeneous electric field. Chem. Tech. Fuels Oil (6), 34-36.
    • Paulsen, J.D., Burton, J.C., Nagel, S.R., Appathurai, S., Harris, M.T., Basaran, O.A., 2012. The inexorable resistance of inertia determines the initial regime of drop coalescence. PNAS 109 (18), 6857-6861.
    • Pearce, C.A.R., 1953. The mechanism of the resolution of water-in-oil emulsions by electrical treatment. Br. J. Appl. Phys. 5, 136-143.
    • Pedersen, A., Ildstad, E., Nysveen, A., Oct 2004. Forces and movement of water droplets in oil caused by applied electric field. In: In Electrical Insulation and Dielectric Phenomena, 2004. CEIDP'04. 2004 Annual Report Conference on, pp. 683-687.
    • Priest, C., Herminghaus, S., Seemann, R., 2006. Controlled electrocoalescence in microfluidics: targeting a single lamella. Appl. Phys. Lett. 89, 134101.
    • Raisin, J., Atten, P., Aitken, F., Reboud, J., 2008. Electrically induced coalescence of two facing anchored water drops in oil. In: IEEE-ICDL 2008.
    • Raisin, J., Reboud, J.-L., Atten, P., 2010. Field induced coalescence of two water drops suspended in a dielectric fluid. In: Proceedings of 7th Conference of French Electrostatics Society, SFE2010.
    • Raisin, J., Reboud, L., Atten, P., 2011a. Electrocoalescence of water drops in oil shear flow: development of an experimental set up. In: IEEE-ICDL 2011.
    • Raisin, J., Atten, P., Reboud, L., 2011b. Field induced coalescence of two free water drops in a viscous dielectric fluid. In: IEEE-ICDL.
    • Raisin, J., Reboud, J., Atten, P., 2011c. Electrically induced deformations of water-air and water-oil interfaces in relation with electrocoalescence. J. Electrostat. 69, 275-283.
    • Raisin, J., 2011. Electrocoalescence in Water-in-oil Emulsions: Toward an Efficiency Criterion. Joseph Fourier University, Grenoble, France (PhD Thesis).
    • Ray, B., Biswas, G., Sharma, A., 2010. Generation of secondary droplets in coalescence of a drop at a liquid-liquid interface. J. Fluid Mech. 655, 72-104.
    • Rayat, K., Feyzi, F., 2012. Estimation of the electric field strength required for breaking the water-in-oil emulsion: a thermodynamic approach considering droplets deformation and the effect of interfacial tension. Fluid Phase Equilib. 316, 156-163.
    • Reboud, J.L., Raisin, J., Atten, P., 2008. Numerical simulation of the electrically induced deformation of a water-oil interface. In: 6ème Conférence de la Société Francaise d'Electrostatique, Paris and Gif-sur-Yvette, 2008.
    • Ristenpart, W.D., Bird, J.C., Belmonte, A., Dollar, F., Stone, H.A., 2009. Non-coalescence of oppositely charged drops. Nature 461 (7262), 377-380.
    • Sartor, D., 1954. A laboratory investigation of collision efficiencies, coalescence and electrical charging of simulated cloud droplets. J. Meteorol. 11, 91-103.
    • Scott, T.C., Wham, R.M., 1989. An electrically driven multistage countercurrent solvent extraction device: the emulsion-phase contactor. Ind. Eng. Chem. Res. 28, 94-97.
    • Siu, Y.L., Jones, T.K.W., Yu, K.W., 2001. Interparticle force in polydisperse electrorheological fluid: beyond the dipole approximation. Comput. Phys. Commun. 142, 446-452.
    • Sjoblom, J., Soderlund, H., Lindblad, S., Johansen, E.J., Skjarvo, E.J., 1990. Water-in-crude oil emulsions from the Norwegian continental shelf. Part II. Chemical destabilization and interfacial tensions. Colloid Polym. Sci. 268, 389.
    • Sjoblom, J., Urdahl, O., Børve, K.G.N., Mingyuan, L., Saeten, J.O., Christy, A.A., Gu, T., 1992. Stabilization and destabilization of water-in-oil emulsions from the Norwegian continental shelf: correlation with model systems. Adv. Colloid Interface Sci. 41, 241.
    • Speed, B., 1919. An appreciation of Dr Cottrell. Ind. Eng. Chem. 2 (2), 153.
    • Suemar, P., Fonseca, E.F., Coutinho, R.C., Machado, F., Fontes, F., Ferreira, L.C., Lima, E.L., Melo, P.L., Pinto, J.C., Nele, M., 2012. Quantitative evaluation of the efficiency of water-in-crude-oil emulsion dehydration by electrocoalescence in pilot-plant and full-scale units. Ind. Eng. Chem. Res. 51, 13423-13437.
    • Sun, D., Jong, S.C., Duan, X., Zhou, D., 1999. Demulsification of water-in-oil emulsion by wetting coalescence materials in stirred- and packed-columns. Colloids Surf., A: Physicochem. Eng. Aspects 150, 69-75.
    • Szymborski, T., Korczyk, P.M., Holyst, R., Garstecki, P., 2011. Ionic polarization of liquid-liquid interfaces: dynamic control of the rate of electro-coalescence. Appl. Phys. Lett. 99, 09410.
    • Taylor, G.I., McEwan, A.D., 1965. The stability of a horizontal fluid interface in a vertical electric field. J. Fluid. Mech. 22 (1), 1-15.
    • Taylor, G.I., 1964. Disintegration of water drops in an electric field. Proc. R. Soc. London, Ser. A 280, 383-397.
    • Taylor, G.I., 1968. The coalescence of closely spaced drops when they are at different potentials. Proc. R. Soc. London, A: Math. Phys. Sci. 306 (1487), 422-434.
    • Taylor, S.E., 1988. Investigations into the electrical and coalescence behaviour of water-in-crude oil emulsions in high voltage gradients. Colloid Surf. 29, 29-51.
    • Taylor, S.E., 1996. Theory and practice of electrically enhanced phase separation of water-in-oil emulsions. Trans. IChemE 74 (A).
    • Thoroddsen, S.T., Takehara, K., 2000. The coalescence cascade of a drop. Phys. Fluids 12 (6), 1265-1267.
    • Trapy J., Noik C., 2007. Separation device comprising a tubular electrocoalescer. US Patent, US7166218 B2, 23 Jan 2007.
    • Urdahl, O., Williams, T.J., Bailey, A.G.M., Thew, T., 1996. Electrostatic destabilisation of water-in-oil emulsions under conditions of turbulent flow. IChemE 74 (1), 158-165.
    • Urdahl, O., Wayth, N.J., Førdedal, H., Williams, T.J., Bailey, A.G., 2001. Compact electrostatic coalescer technology. In: Sjoblom, J. (Ed.), Encyclopedic Handbook of Emulsion Technology. CRC Press, New York.
    • Viec. http://www.hamworthy.com/products-systems/oil-gas/oilseparation-systems/viec-separation-technology/viec/ (accessed: 2014-10-09).
    • Vinogradova, O.I., 1995. Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11, 2213-2220.
    • Wakeman, R., 1986. Electrofiltration: microfiltration plus electrophoresis. Chem. Eng. 426 (June), 65.
    • Wang, W., Yang, C., Liu, Y.S., Li, C.M., 2010. On-demand droplet release for droplet-based microfluidic system. Lab Chip 10, 559-562.
    • Waterman, L.C., 1965. Electrical coalescers. Chem. Eng. Prog. 61 (10), 51-57.
    • Williams, T.J., Bailey, A.G., 1986. Changes in the size distribution of a water-in-oil emulsion due to electric field induced coalescence. IEEE Trans. Ind. Appl. IA-22 (3), 536-541.
    • Wu, J., Xu, Y., Dabros, T., Hamza, H., 2003. Effect of demulsifier properties on destabilization of water-in-oil emulsion. Energy Fuel 17, 1554-1559.
    • Wärtsilä vessel internal electrostatic coalescer. http://www.wartsila.com/en/oil-separation/oil/viec (accessed: 2014-10-09).
    • Yu, K.W., Jones, T.K.W., 2000. Interparticle forces in polydisperse electrorheological fluids. Comput. Phys. Commun. 129, 177-184.
    • Zhang, Y., Liu, Y., Ji, R., Wang, F., Cai, B., Li, H., 2011. Application of variable frequency technique on electrical dehydration of w/o emulsion. Colloids Surf., A: Physicochem. Eng. Aspects 386, 185-190.
    • Zhang, Y., Liu, Y., Ji, R., Cai, B., Li, H., Wang, F., 2012. Dehydration efficiency of water-in-model oil emulsions in high frequency pulsed dc electrical field: effect of physical and chemical properties of the emulsions. J. Disper. Sci. Technol. 33 (11), 1574-1581.
    • Zhao, C., Yang, C., 2013. Electrokinetics of non-Newtonian fluids: a review. Adv. Colloid Interface 201-202, 94-108.
    • Zukoski, C.F., 1993. Material properties and the electrorheological response. Annu. Rev. Mater. Sci. 23, 45-78.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    57
    57%
  • Discovered through pilot similarity algorithms. Send us your feedback.