LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Horne, Colin (2016)
Languages: English
Types: Unknown
Subjects:

Classified by OpenAIRE into

arxiv: Quantitative Biology::Neurons and Cognition
Cochlear implants stimulate the spiral ganglion cells (SGCs) with trains of charge-balanced current pulses. How the SGCs respond has often been studied with the leaky integrate-and-fire (LIF) model. However, while the LIF model partially reproduces how SGCs respond to monophasic pulses, which are not charge balanced, it does not reproduce how the opposite-polarity phases of charge-balanced pulses interact to reduce their efficacy, and nor does it reproduce the temporal distributions of the evoked spikes, or how they depend on the strength of the stimulus. To address these limitations, I extended the LIF model by adding an initiation period to spiking, delaying spike emission by a stochastic, stimulus-dependent duration, so that the temporal distribution of the model reproduces that of the SGC. During its initiation, a spike may be cancelled by anodic current, thus allowing opposite-polarity phases to interact, reducing the stimulus’s efficacy in a way that reproduces how the thresholds of SGCs depend on the delay between the phases of cathodic-leading biphasic pulses.\ud \ud A spike may only be cancelled by anodic current after it has been initiated by cathodic current, and thus, cancellation only occurs in response to pulses in which a cathodic phase precedes an anodic phase. Reversing the phase order of a pulse therefore changes how the phases interact. To investigate whether phase order has a similar effect in the real neuron, I analysed the phase plane of a biophysical point-neuron model and found that the qualitative description of excitation depends on phase order in a way that is consistent with the theory of spike cancellation. That the phase order of a biphasic pulse affects how excitation occurs has direct consequences for cochlear implant coding strategies, as it affects whether the interactions between consecutive biphasic pulses are facilitatory or inhibitory.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Introduction 6 1.1 Physiology of the peripheral auditory system . . . . . . . . . . . . . . 7 1.2 The neural coding of sound . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Cochlear implants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Stimulation strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Computational modelling . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
    • 5 A novel phenomenological model of electrical stimulation 102 5.1 The stochastic leaky integrate and re neuron . . . . . . . . . . . . . . 103 5.1.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.1.2 Model response properties . . . . . . . . . . . . . . . . . . . . . 104 7 Discussion 161 7.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.1.1 Spike cancellation in the literature . . . . . . . . . . . . . . . . 161 7.1.2 Use of phase plane analysis to understand excitation . . . . . . 163 7.1.3 The Rinzel reduction of the Hodgkin Huxley model . . . . . . . 164 7.2 Limitations of point models . . . . . . . . . . . . . . . . . . . . . . . . 168 7.3 Alternatives to point models . . . . . . . . . . . . . . . . . . . . . . . . 172 7.4 Summary and future directions . . . . . . . . . . . . . . . . . . . . . . 174 Colombo, J. and Parkins, C. (1987). A model of electrical excitation of the mammalian auditory-nerve neuron. Hearing Research, 31(3):287{311.
    • Cooley, J. and Dodge Jr, F. (1966). Digital computer solutions for excitation and propagation of the nerve impulse. Biophysical Journal, 6(5):583{599.
    • Coste, R. L. and P ngst, B. E. (1996). Stimulus features a ecting psychophysical detection thresholds for electrical stimulation of the cochlea. III. Pulse polarity. The Journal of the Acoustical Society of America, 99(5):3099{3108.
    • Cotterill, R. (2003). Biophysics: An Introduction. John Wiley & Sons, Chichester, England.
    • Cudmore, R. H., Fronzaroli-Molinieres, L., Giraud, P., and Debanne, D. (2010). Spiketime precision and network synchrony are controlled by the homeostatic regulation of the d-type potassium current. The Journal of Neuroscience, 30(38):12885{12895.
    • Daley, D. and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods of Probability and its Applications. Springer-Verlag, New York, USA.
    • Dayan, P. and Abbott, L. L. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge, MA, USA.
    • De Vries, G. and Sherman, A. (2000). Channel sharing in pancreatic -cells revisited: Enhancement of emergent bursting by noise. Journal of Theoretical Biology, 207(4):513{530.
    • Dean, D. and Lawrence, P. D. (1983). Application of phase analysis of the frankenhaeuser-Huxley equations to determine threshold stimulus amplitudes. IEEE Transactions on Biomedical Engineering, (12):810{818.
    • Dean, D. and Lawrence, P. D. (1985). Optimization of neural stimuli based upon a variable threshold potential. IEEE Transactions on Biomedical Engineering, (1):8{ 14.
    • DeFelice, L. J. and Isaac, A. (1993). Chaotic states in a random world: relationship between the nonlinear di erential equations of excitability and the stochastic properties of ion channels. Journal of Statistical Physics, 70(1-2):339{354.
    • Dietz, M., Marquardt, T., Salminen, N. H., and McAlpine, D. (2013). Emphasis of spatial cues in the temporal ne structure during the rising segments of amplitudemodulated sounds. Proceedings of the National Academy of Sciences, 110(37):15151{ 15156.
    • Dodla, R., Svirskis, G., and Rinzel, J. (2006). Well-timed, brief inhibition can promote spiking: postinhibitory facilitation. Journal of Neurophysiology, 95(4):2664{2677.
    • Drennan, W. R., Won, J. H., Dasika, V. K., and Rubinstein, J. T. (2007). E ects of temporal ne structure on the lateralization of speech and on speech understanding in noise. Journal of the Association for Research in Otolaryngology, 8(3):373{383.
    • Dynes, S. (1996). Discharge characteristics of auditory nerve bers for pulsatile electrical stimuli. PhD thesis, Massachusetts Institute of Technology, MA, USA.
    • Eddington, D. K., Tierney, J., Noel, V., Hermann, B., Whearty, M., and Finley, C. (1994). Speech processors for auditory prostheses. Eighth quarterly progress report, NIH contract.
    • Ermentrout, G. and Terman, D. (2010). Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics. Springer, New York, USA.
    • Estep, D. (2006). Practical Analysis in One Variable. Undergraduate Texts in Mathematics. Springer, New York, USA.
    • Faisal, A., Selen, L., and Wolpert, D. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4):292{303.
    • Faisal, A. A. and Laughlin, S. B. (2007). Stochastic simulations on the reliability of action potential propagation in thin axons. PLoS Comput Biol, 3(5):e79.
    • Favre, E. and Pelizzone, M. (1993). Channel interactions in patients using the ineraid multichannel cochlear implant. Hearing Research, 66(2):150{156.
    • Fay, R. R. and Popper, A. N. (2005). Introduction to sound source localization. In Sound Source Localization, pages 1{5. Springer-Verlag, New York, USA.
    • Fayad, J. N. and Linthicum, F. H. (2006). Multichannel cochlear implants: relation of histopathology to performance. The Laryngoscope, 116(8):1310{1320.
    • Fearn, R. and Wolfe, J. (2000). The relative importance of rate and place: experiments using pitch scaling techniques with cochlear implantees. Annals of Otology, Rhinology and Laryngology, 109(12):51{53.
    • Ferguson, A., Sweeney, J., Durand, D., and Mortimer, J. (1987). Finite di erence modelling of nerve cu electric elds. In Proceedings of the 9th Annual Conference of the Engineering in Medicine and Biological Society, volume 3, pages 1579{1580.
    • Finke, C., Vollmer, J., Postnova, S., and Braun, H. A. (2008). Propagation e ects of current and conductance noise in a model neuron with subthreshold oscillations. Mathematical Biosciences, 214(1):109{121.
    • Fitzhugh, R. (1960). Thresholds and plateaus in the Hodgkin-Huxley nerve equations. The Journal of General Physiology, 43(5):867{896.
    • Fitzhugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1(6):445{466.
    • Fitzhugh, R. (1969). Mathematical models of excitation and propagation in nerve. McGraw-Hill, New York, USA.
    • Fox, R. F. (1997). Stochastic versions of the Hodgkin-Huxley equations. Biophysical Journal, 72(5):2068{2074.
    • Fox, R. F. and Lu, Y.-n. (1994). Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Physical Review E, 49(4):3421.
    • Frankenhaeuser, B. and Huxley, A. (1964). The action potential in the myelinated nerve bre of Xenopus laevis as computed on the basis of voltage clamp data. The Journal of Physiology, 171(2):302{315.
    • Frankenhaeuser, B. and Vallbo, A. (1965). Accommodation in myelinated nerve bres of Xenopus laevis as computed on the basis of voltage clamp data. Acta Physiologica Scandinavica, 63(1-2):1{20.
    • Fredelake, S. and Hohmann, V. (2012). Factors a ecting predicted speech intelligibility with cochlear implants in an auditory model for electrical stimulation. Hearing Research, 287(1):76{90.
    • Fretz, R. J. and Fravel, R. P. (1985). Design and function: a physical and electrical description of the 3M House cochlear implant system. Ear and Hearing, 6(3):14S{ 19S.
    • Fuchs, P. A., Glowatzki, E., and Moser, T. (2003). The a erent synapse of cochlear hair cells. Current Opinion in Neurobiology, 13(4):452{458.
    • Game, C., Thomson, D., Gibson, W., and Pauka, C. (1989). Polarity order of biphasic square pulse electric current stimulation of human cochlear nerve: observations with transtympanic electrodes. Journal of the Neurological Sciences, 90(3):291{298.
    • Gelfand, S. A. (2009). Essentials of Audiology. Thieme, New York, USA.
    • Gerstner, W. (1991). Associative memory in a network of `biological' neurons. In Advances in Neural Information Processing Systems, volume 3, pages 84{90. Morgan Kaufmann, San Mateo.
    • Gerstner, W. (1995). Time structure of the activity in neural network models. Physical Review E, 51(1):738.
    • Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press, Cambridge, UK.
    • Gerstner, W. and van Hemmen, J. L. (1992). Associative memory in a network of `spiking' neurons. Network: Computation in Neural Systems, 3(2):139{164.
    • Gerwinn, S., Macke, J. H., and Bethge, M. (2010). Bayesian inference for generalized linear models for spiking neurons. Frontiers in Computational Neuroscience, 4(12). DOI: 10.3389/fncom.2010.00012.
    • Girvin, J. P., Marks, L. E., Antunes, J. L., Quest, D. O., OKeefe, M. D., Ning, P., and Dobelle, W. H. (1982). Electrocutaneous stimulation I. The e ects of stimulus parameters on absolute threshold. Perception & Psychophysics, 32(6):524{528.
    • Goldwyn, J., Rubinstein, J., and Shea-Brown, E. (2012). A point process framework for modeling electrical stimulation of the auditory nerve. Journal of Neurophysiology, 108(5):1430{1452.
    • Goldwyn, J. H. and Shea-Brown, E. (2011). The what and where of adding channel noise to the Hodgkin-Huxley equations. PLoS Computational Biology, 7(11):e1002247.
    • Gorman, P. H. and Mortimer, J. T. (1983). The e ect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Transactions on Biomedical Engineering, (7):407{414.
    • Greenwood, D. D. (1990). A cochlear frequency-position function for several species| 29 years later. The Journal of the Acoustical Society of America, 87(6):2592{2605.
    • Grill Jr, W. M. (1999). Modeling the e ects of electric elds on nerve bers: in uence of tissue electrical properties. IEEE Transactions on Biomedical Engineering, 46(8):918{928.
    • Grothe, B., Pecka, M., and McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90(3):983{1012.
    • Grumet, A. E. (1999). Electric stimulation parameters for an epi-retinal prosthesis. PhD thesis, Massachusetts Institute of Technology, MA, USA.
    • Hamacher, V. (2004). Signalverarbeitungsmodelle des elektrisch stimulierten Gehors. Mainz Verlag, Germany.
    • Hanekom, T. (2001). Three-dimensional spiraling nite element model of the electrically stimulated cochlea. Ear and Hearing, 22(4):300{315.
    • Hardie, N. A. and Shepherd, R. K. (1999). Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hearing Research, 128(1):147{165.
    • Harrison, J. M. and Howe, M. E. (1974). Anatomy of the a erent auditory nervous system of mammals. In Keidel, W. D. and Ne , W. D., editors, Auditory System: Anatomy Physiology (Ear), pages 283{336. Springer, Berlin, Heidelberg, Germany.
    • Hartmann, R., Topp, G., and Klinke, R. (1984). Discharge patterns of cat primary auditory bers with electrical stimulation of the cochlea. Hearing Research, 13(1):47{ 62.
    • Hastie, T. and Tibshirani, R. (1987). Generalized additive models: some applications. Journal of the American Statistical Association, 82(398):371{386.
    • Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models, volume 43. CRC Press, Boca Raton, Florida, USA.
    • Higham, D. J. (2001). An algorithmic introduction to numerical simulation of stochastic di erential equations. SIAM Review, 43(3):525{546.
    • Hill, A. (1936a). Excitation and accommodation in nerve. Proceedings of the Royal Society of London. Series B, Biological Sciences, 119(814):305{355.
    • Hill, A. (1936b). The strength-duration relation for electric excitation of medullated nerve. Proceedings of the Royal Society of London. Series B, Biological Sciences, 119(815):440{453.
    • Hille, B. and Catterall, W. (2012). Electrical excitability and ion channels. In Siegel, G., Agrano , R., and Molino , P., editors, Basic Neurochemistry: Molecular, Cellular and Medical Aspects, pages 63{80. Raven Press, New York, USA.
    • Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Bulletin of Mathematical Biology, 52(1):25{71.
    • Hofmann, L., Ebert, M., Tass, P. A., and Hauptmann, C. (2011). Modi ed pulse shapes for e ective neural stimulation. Frontiers in Neuroengineering, 4(9). DOI: 10.3389/fneng.2011.00009.
    • Hong, R., Rubinstein, J., Wehner, D., and Horn, D. (2003). Dynamic range enhancement for cochlear implants. Otology & Neurotology, 24(4):590.
    • Huang, Y., Rudiger, S., and Shuai, J. (2013). Langevin approach for stochastic Hodgkin-Huxley dynamics with discretization of channel open fraction. Physics Letters A, 377(44):3223{3227.
    • Huber, M. T. and Braun, H. A. (2007). Conductance versus current noise in a neuronal model for noisy subthreshold oscillations and related spike generation. Biosystems, 89(1):38{43.
    • Hudspeth, A. (2008). Making an e ort to listen: mechanical ampli cation in the ear. Neuron, 59(4):530{545.
    • Imennov, N. and Rubinstein, J. (2009). Stochastic population model for electrical stimulation of the auditory nerve. IEEE Transactions on Biomedical Engineering, 56(10):2493{2501.
    • Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience. MIT Press, Cambridge, MA, USA.
    • Jack, J. J. B., Noble, D., and Tsien, R. W. (1975). Electric Current Flow in Excitable Cells. Clarendon Press, Oxford, UK.
    • Javel, E. (1990). Acoustic and electrical encoding of temporal information. In Miller, J. M. and Spelman, F. A., editors, Cochlear Implants: Models of the Electrically Stimulated Ear, pages 247{295. Springer-Verlag, New York, USA.
    • Javel, E. and Shepherd, R. (2000). Electrical stimulation of the auditory nerve: III. Response initiation sites and temporal ne structure. Hearing Research, 140(1- 2):45{76.
    • Javel, E., Tong, Y., Shepherd, R., and Clark, G. (1987). Responses of cat auditory nerve bers to biphasic electrical current pulses. Annals of Otology, Rhinology and Laryngology, 96(128):26{30.
    • Johnson, D. H. (1980). The relationship between spike rate and synchrony in responses of auditory-nerve bers to single tones. The Journal of the Acoustical Society of America, 68(4):1115{1122.
    • Jolivet, R., Lewis, T. J., and Gerstner, W. (2004). Generalized integrate-and- re models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of Neurophysiology, 92(2):959{976.
    • Jolivet, R., Rauch, A., Luscher, H.-R., and Gerstner, W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of Computational Neuroscience, 21(1):35{49.
    • Joris, P. and Yin, T. C. (2007). A matter of time: internal delays in binaural processing. Trends in Neurosciences, 30(2):70{78.
    • Joris, P. X. and Verschooten, E. (2013). On the limit of neural phase locking to ne structure in humans. In Moore, J. B. C., Patterson, D. R., Winter, M. I., Carlyon, P. R., and Gockel, E. H., editors, Basic Aspects of Hearing: Physiology and Perception, pages 101{108. Springer-Verlag, New York, USA.
    • Joshi, S., Dau, T., and Epp, B. (2015). A model of auditory nerve responses to electrical stimulation. 38th Mid-Winter Meeting of the Association for Research in Otolaryngology. Baltimore, Maryland, USA.
    • Kang, S., Chwodhury, T., Moon, I. J., Hong, S. H., Yang, H., Won, J. H., and Woo, J. (2015). E ects of electrode position on spatio-temporal auditory nerve ber responses: A 3D computational model study. Computational and Mathematical Methods in Medicine, 2015:934382.
    • Keener, J. and Sneyd, J. (2010). Mathematical Physiology: I: Cellular Physiology, volume 1. Springer-Verlag, New York, USA.
    • Kellems, A. R., Chaturantabut, S., Sorensen, D. C., and Cox, S. J. (2010). Morphologically accurate reduced order modeling of spiking neurons. Journal of Computational Neuroscience, 28(3):477{494.
    • Kistler, W. M., Gerstner, W., and van Hemmen, J. L. (1997). Reduction of the Hodgkin-Huxley equations to a single-variable threshold model. Neural Computation, 9(5):1015{1045.
    • Kohn, A. F. (1989). Dendritic transformation of random synaptic inputs as measured from a neuron's spike train-modelling and simulation. IEEE Transactions on Biomedical Engineering, 36(1):44{54.
    • Kong, Y.-Y. and Carlyon, R. P. (2010). Temporal pitch perception at high rates in cochlear implants. The Journal of the Acoustical Society of America, 127(5):3114{ 3123.
    • Kong, Y.-Y., Deeks, J. M., Axon, P. R., and Carlyon, R. P. (2009). Limits of temporal pitch in cochlear implants. The Journal of the Acoustical Society of America, 125(3):1649{1657.
    • Koyama, S., Eden, U. T., Brown, E. N., and Kass, R. E. (2010). Bayesian decoding of neural spike trains. Annals of the Institute of Statistical Mathematics, 62(1):37{59.
    • Koyama, S. and Kass, R. E. (2008). Spike train probability models for stimulus-driven leaky integrate-and- re neurons. Neural Computation, 20(7):1776{1795.
    • Laback, B., Majdak, P., and Baumgartner, W.-D. (2005). Interaural time di erences in temporal ne structure, onset, and o set in bilateral electrical hearing. Perception, 416:87{90.
    • Lansky, P. and Rodriguez, R. (1999a). The spatial properties of a model neuron increase its coding range. Biological Cybernetics, 81(2):161{167.
    • Lansky, P. and Rodriguez, R. (1999b). Two-compartment stochastic model of a neuron. Physica D: Nonlinear Phenomena, 132(1):267{286.
    • Lansky, P. and Rospars, J.-P. (1994). Stochastic model of intensity coding in olfactory neurons. In Pribram, K., editor, Origins: Brain and Self Organization, pages 268{ 285. Lawrence Erlbaum Associates, Hillsdale, New Jersey, USA.
    • Lapicque, L. (1907). Recherches quantitatives sur lexcitation electrique des nerfs traitee comme une polarisation. Journal de Physiologie et de Pathologie Gnrale, 9(1):620{635.
    • Lecar, H. and Nossal, R. (1971). Theory of threshold uctuations in nerves: I. Relationships between electrical noise and uctuations in axon ring. Biophysical Journal, 11(12):1048{1067.
    • Levitan, I. B., Kaczmarek, L. K., et al. (2015). The Neuron: Cell and Molecular Biology. Oxford University Press, Oxford, UK.
    • Litvak, L. (2002). Towards a better speech processor for cochlear implants: Auditorynerve responses to high-rate electric pulse trains. PhD thesis, Massachusetts Institute of Technology, MA, USA.
    • Litvak, L., Delgutte, B., and Eddington, D. (2003a). Improved neural representation of vowels in electric stimulation using desynchronizing pulse trains. The Journal of the Acoustical Society of America, 114:2099.
    • Litvak, L., Delgutte, B., and Eddington, D. (2003b). Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains. The Journal of the Acoustical Society of America, 114:2079.
    • Litvak, L., Smith, Z., Delgutte, B., and Eddington, D. (2003c). Desynchronization of electrically evoked auditory-nerve activity by high-frequency pulse trains of long duration. The Journal of the Acoustical Society of America, 114:2066.
    • Loeb, G. E., White, M. W., and Jenkins, W. M. (1983). Biophysical considerations in electrical stimulation of the auditory nervous system. Annals of the New York Academy of Sciences, 405(1):123{136.
    • Loizou, P. C. (1998). Mimicking the human ear. IEEE Signal Processing Magazine, 15(5):101{130.
    • Macherey, O., Carlyon, R., Van Wieringen, A., and Wouters, J. (2007). A dualprocess integrator-resonator model of the electrically stimulated human auditory nerve. Journal of the Association for Research in Otolaryngology, 8(1):84{104.
    • Macherey, O., Carlyon, R. P., Van Wieringen, A., Deeks, J. M., and Wouters, J. (2008). Higher sensitivity of human auditory nerve bers to positive electrical currents. Journal of the Association for Research in Otolaryngology, 9(2):241{251.
    • Macherey, O., Deeks, J. M., and Carlyon, R. P. (2011). Extending the limits of place and temporal pitch perception in cochlear implant users. Journal of the Association for Research in Otolaryngology, 12(2):233{251.
    • Macherey, O., Van Wieringen, A., Carlyon, R. P., Deeks, J. M., and Wouters, J. (2006). Asymmetric pulses in cochlear implants: e ects of pulse shape, polarity, and rate. Journal of the Association for Research in Otolaryngology, 7(3):253{266.
    • Majdak, P., Laback, B., and Baumgartner, W.-D. (2006). E ects of interaural time differences in ne structure and envelope on lateral discrimination in electric hearinga). The Journal of the Acoustical Society of America, 120(4):2190{2201.
    • Marsalek, P. (1999). Biophysical models of neurons. PhD thesis, Charles University Prague, Faculty of Mathematics and Physics, Prague, Czech Republic.
    • Matsuoka, A., Rubinstein, J., Abbas, P., and Miller, C. (2001). The e ects of interpulse interval on stochastic properties of electrical stimulation: models and measurements. IEEE Transactions on Biomedical Engineering, 48(4):416{424.
    • McAlpine, D. and Grothe, B. (2003). Sound localization and delay lines-do mammals t the model? Trends in Neurosciences, 26(7):347{350.
    • McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, volume 37. Chapman and Hall, London, UK.
    • McKay, C. M. and Henshall, K. R. (2003). The perceptual e ects of interphase gap duration in cochlear implant stimulation. Hearing Research, 181(1):94{99.
    • McNeal, D. (1976). Analysis of a model for excitation of myelinated nerve. IEEE Transactions on Biomedical Engineering, (4):329{337.
    • Meier, J. H., Rotten, W., Zoutman, A. E., Boom, H. B., and Bergveld, P. (1992). Simulation of multipolar ber selective neural stimulation using intrafascicular electrodes. IEEE Transactions on Biomedical Engineering, 39(2):122{134.
    • Mensi, S., Naud, R., and Gerstner, W. (2011). From stochastic nonlinear integrateand- re to generalized linear models. Advances in Neural Information Processing Systems, 24:1377{1385.
    • Micco, A. G. and Richter, C.-P. (2006). Tissue resistivities determine the current ow in the cochlea. Current Opinion in Otolaryngology & Head and Neck Surgery, 14(5):352{355.
    • Middlebrooks, J. (2004). E ects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds. The Journal of the Acoustical Society of America, 116(1):452{468.
    • Mihalas, S. and Niebur, E. (2009). A generalized linear integrate-and- re neural model produces diverse spiking behaviors. Neural Computation, 21(3):704{718.
    • Miller, A., Smith, D., and P ngst, B. (1999a). Across-species comparisons of psychophysical detection thresholds for electrical stimulation of the cochlea: II. Strength-duration functions for single, biphasic pulses. Hearing Research, 135(1):47{ 55.
    • Miller, A. L., Morris, D. J., and P ngst, B. E. (1997). Interactions between pulse separation and pulse polarity order in cochlear implants. Hearing Research, 109(1):21{33.
    • Miller, C., Abbas, P., and Robinson, B. (2001a). Response properties of the refractory auditory nerve ber. Journal of the Association for Research in Otolaryngology, 2(3):216{232.
    • Miller, C., Abbas, P., Robinson, B., Rubinstein, J., and Matsuoka, A. (1999b). Electrically evoked single- bre action potentials from cat: responses to monopolar, monophasic stimulation. Hearing Research, 130(1-2):197{218.
    • Miller, C., Abbas, P., and Rubinstein, J. (1999c). An empirically based model of the electrically evoked compound action potential. Hearing Research, 135(1-2):1{18.
    • Miller, C., Abbas, P., Rubinstein, J., Robinson, B., Matsuoka, A., and Woodworth, G. (1998). Electrically evoked compound action potentials of guinea pig and cat: responses to monopolar, monophasic stimulation. Hearing Research, 119(1-2):142{ 154.
    • Miller, C., Robinson, B., Rubinstein, J., Abbas, P., and Runge-Samuelson, C. (2001b). Auditory nerve responses to monophasic and biphasic electric stimuli. Hearing Research, 151(1-2):79{94.
    • Miller, C. A., Abbas, P. J., Nourski, K. V., Hu, N., and Robinson, B. K. (2003). Electrode con guration in uences action potential initiation site and ensemble stochastic response properties. Hearing Research, 175(1):200{214.
    • Miller, M. I. and Mark, K. E. (1992). A statistical study of cochlear nerve discharge patterns in response to complex speech stimuli. The Journal of the Acoustical Society of America, 92(1):202{209.
    • Mino, H. and Rubinstein, J. (2006). E ects of neural refractoriness on spatio-temporal variability in spike initiations with electrical stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(3):273{280.
    • Mino, H., Rubinstein, J., Miller, C., and Abbas, P. (2004). E ects of electrode-to- ber distance on temporal neural response with electrical stimulation. IEEE Transactions on Biomedical Engineering, 51(1):13{20.
    • Mino, H., Rubinstein, J. T., and White, J. A. (2002). Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Annals of Biomedical Engineering, 30(4):578{587.
    • Mogyoros, I., Kiernan, M. C., and Burke, D. (1996). Strength-duration properties of human peripheral nerve. Brain, 119(2):439{448.
    • Moon, A. K., Zwolan, T. A., and P ngst, B. E. (1993). E ects of phase duration on detection of electrical stimulation of the human cochlea. Hearing Research, 67(1):166{178.
    • Moore, B. C. (2012). An Introduction to the Psychology of Hearing. Emerald Group Publishing Limited, Bingley, UK.
    • Moore, B. C. (2014). Auditory Processing of Temporal Fine Structure: E ects of Age and Hearing Loss. World Scienti c Publishing, Singapore.
    • Morse, R. P. and Evans, E. F. (1996). Enhancement of vowel coding for cochlear implants by addition of noise. Nature Medicine, 2(8):928{932.
    • Morse, R. P. and Evans, E. F. (1999). Additive noise can enhance temporal coding in a computational model of analogue cochlear implant stimulation. Hearing Research, 133(1):107{119.
    • Motz, H. and Rattay, F. (1986). A study of the application of the Hodgkin-Huxley and the Frankenhaeuser-Huxley model for electrostimulation of the acoustic nerve. Neuroscience, 18(3):699{712.
    • Nadol Jr, J., Young, Y., and Glynn, R. (1989). Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. The Annals of Otology, Rhinology, and Laryngology, 98(6):411{416.
    • Naud, R. and Gerstner, W. (2012). The performance (and limits) of simple neuron models: Generalizations of the leaky integrate-and- re model. In Le Novere, N., editor, Computational Systems Neurobiology, pages 163{192. Springer-Verlag, New York, USA.
    • Negm, M. H. and Bruce, I. C. (2008). E ects of Ih and IKLT on the response of the auditory nerve to electrical stimulation in a stochastic Hodgkin-Huxley model. In Engineering in Medicine and Biology Society, 2008. Proceedings of the 30th Annual International Conference of the IEEE, pages 5539{5542. DOI: 10.1109/iembs.2008.4650469.
    • Nelder, J. and Wedderburn, R. (1972). Generalized linear models. Journal of the Royal Statistical Society. Series A (General), 135:370{384.
    • Nie, K., Stickney, G., and Zeng, F.-G. (2005). Encoding frequency modulation to improve cochlear implant performance in noise. IEEE Transactions on Biomedical Engineering, 52(1):64{73.
    • Noble, D. and Stein, R. (1966). The threshold conditions for initiation of action potentials by excitable cells. The Journal of Physiology, 187(1):129{162.
    • O'Gorman, D., Brughera, A., and Colburn, S. (2013). Does neural shunting limit temporal coding by the auditory nerve at high pulse rates? In 2013 Conference in Implantable Auditory Prostheses, California. Poster.
    • O'Gorman, D., White, J., and Shera, C. (2009). Dynamical instability determines the e ect of ongoing noise on neural ring. Journal of the Association for Research in Otolaryngology, 10(2):251{267.
    • Ooyama, H. and Wright, E. B. (1961). Anode break excitation on single Ranvier node of frog nerve. American Journal of Physiology-Legacy Content, 200(2):209{218.
    • Ozer, M. and Ekmekci, N. H. (2005). E ect of channel noise on the time-course of recovery from inactivation of sodium channels. Physics Letters A, 338(2):150{154.
    • Parkins, C. and Colombo, J. (1987). Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes. Hearing Research, 31(3):267{285.
    • Patton, K. T. and Thibodeau, G. A. (2016). Anatomy & Physiology. Elsevier Health Sciences, Philadelphia, USA.
    • P ngst, B. E., De Haan, D. R., and Holloway, L. A. (1991). Stimulus features a ecting psychophysical detection thresholds for electrical stimulation of the cochlea. I: phase duration and stimulus duration. The Journal of the Acoustical Society of America, 90(4):1857{1866.
    • Pickles, J. O. (2012). An Introduction to the Physiology of Hearing. Emerald Group Publishing Limited, Bingley, UK.
    • Plack, C. J. and Oxenham, A. J. (2005a). Overview: The present and future of pitch. In Plack, C. J., Oxenham, A. J., Fay, R. R., and Popper, A. N., editors, Pitch, pages 1{6. Springer-Verlag, New York, USA.
    • Plack, C. J. and Oxenham, A. J. (2005b). The psychophysics of pitch. In Plack, C. J., Oxenham, A. J., Fay, R. R., and Popper, A. N., editors, Pitch, pages 7{55. Springer-Verlag, New York, USA.
    • Plesser, H. E. and Gerstner, W. (2000). Noise in integrate-and- re neurons: From stochastic input to escape rates. Neural Computation, 12(2):367{384.
    • Plonsey, R. and Barr, R. C. (1995). Electric eld stimulation of excitable tissue. IEEE Transactions on Biomedical Engineering, 42(4):329{336.
    • Plonsey, R. and Barr, R. C. (2000). Bioelectricity: A Quantitative Approach, chapter Electrical stimulation of excitable tissue, pages 179{216. Springer-Verlag, New York, USA.
    • Quarteroni, A., Sacco, R., and Saleri, F. (2010). Numerical Mathematics, volume 37. Springer-Verlag, Berlin, Heidelberg, Germany.
    • Ramekers, D., Versnel, H., Strahl, S. B., Smeets, E. M., Klis, S. F., and Grolman, W. (2014). Auditory-nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as predictors for neuronal degeneration. Journal of the Association for Research in Otolaryngology, 15(2):187{202.
    • Ranck Jr, J. B. (1975). Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Research, 98(3):417{440.
    • Rangayyan, R. M. (2015). Biomedical Signal Analysis, volume 33. John Wiley & Sons, Chichester, England.
    • Rattay, F. (1986). Analysis of models for external stimulation of axons. IEEE Transactions on Biomedical Engineering, (10):974{977.
    • Rattay, F. (1987). Ways to approximate current-distance relations for electrically stimulated bers. Journal of Theoretical Biology, 125(3):339{349.
    • Rattay, F. (1988). Modeling the excitation of bers under surface electrodes. IEEE Transactions on Biomedical Engineering, 35(3):199{202.
    • Rattay, F. (1989). Analysis of models for extracellular ber stimulation. IEEE Transactions on Biomedical Engineering, 36(7):676{682.
    • Rattay, F. (1990). Electrical Nerve Stimulation: Theory, Experiments and Applications. Springer-Verlag, Wien, Austria.
    • Rattay, F. (1998). Analysis of the electrical excitation of CNS neurons. IEEE Transactions on Biomedical Engineering, 45(6):766{772.
    • Rattay, F. and Aberham, M. (1993). Modeling axon membranes for functional electrical stimulation. IEEE Transactions on Biomedical Engineering, 40(12):1201{1209.
    • Rattay, F., Leao, R. N., and Felix, H. (2001a). A model of the electrically excited human cochlear neuron. II. in uence of the three-dimensional cochlear structure on neural excitability. Hearing Research, 153(1):64{79.
    • Rattay, F., Lutter, P., and Felix, H. (2001b). A model of the electrically excited human cochlear neuron: I. contribution of neural substructures to the generation and propagation of spikes. Hearing Research, 153(1):43{63.
    • Rattay, F., Paredes, L., and Leao, R. (2012). Strength-duration relationship for intraversus extracellular stimulation with microelectrodes. Neuroscience, 214:1{13.
    • Reilly, J., Freeman, V., and Larkin, W. (1985). Sensory e ects of transient electrical stimulation-evaluation with a neuroelectric model. IEEE Transactions on Biomedical Engineering, 32(12):1001{1011.
    • Rinzel, J. (1985). Excitation dynamics: insights from simpli ed membrane models. Federation Proceedings, 44(15):2944{2946.
    • Robert, M. E. (2006). Integrate-and- re model for electrically stimulated nerve cell. IEEE Transactions on Biomedical Engineering, 53(4):756{758.
    • Robles, L. and Ruggero, M. A. (2001). Mechanics of the mammalian cochlea. Physiological Reviews, 81(3):1305{1352.
    • Rodriguez, R. and Lansky, P. (2000). A simple stochastic model of spatially complex neurons. Biosystems, 58(1):49{58.
    • Rubinstein, J. (1995). Threshold uctuations in an n sodium channel model of the node of Ranvier. Biophysical Journal, 68(3):779{785.
    • Rubinstein, J., Miller, C., Mino, H., and Abbas, P. (2001). Analysis of monophasic and biphasic electrical stimulation of nerve. IEEE Transactions on Biomedical Engineering, 48(10):1065{1070.
    • Sterratt, D., Graham, B., Gillies, A., and Willshaw, D. (2011). Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge, UK.
    • Weitz, A. C., Behrend, M. R., Ahuja, A. K., Christopher, P., Wei, J., Wuyyuru, V., Patel, U., Greenberg, R. J., Humayun, M. S., Chow, R. H., et al. (2014). Interphase gap as a means to reduce electrical stimulation thresholds for epiretinal prostheses. Journal of Neural Engineering, 11(1):016007.
    • Woo, J., Miller, C. A., and Abbas, P. J. (2010). The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and ber diameter: a computer model study. Journal of the Association for Research in Otolaryngology, 11(2):283{296.
    • Wright, A., Davis, A., Bredberg, G., Ulehlova, L., and Spencer, H. (1986). Hair cell distributions in the normal human cochlea. Acta Oto-Laryngologica. Supplementum, 444:1{48.
    • Wysocki, J. and Skarzynski, H. (1997). Cochleostomy during the intracochlear implantation. anatomical conditions in children and adults. Otolaryngologia Polska. The Polish Otolaryngology, 52(6):689{694.
    • Zeng, F.-G., Nie, K., Stickney, G. S., Kong, Y.-Y., Vongphoe, M., Bhargave, A., Wei, C., and Cao, K. (2005). Speech recognition with amplitude and frequency modulations. Proceedings of the National Academy of Sciences of the United States of America, 102(7):2293{2298.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    59
    59%
  • No similar publications.

Share - Bookmark

Funded by projects

  • NIH | DESIGN OF PEDIATRIC COCHLEA...

Cite this article