Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Taylor, Andrew; Vágány, Viktória; Jackson, Alison C.; Harrison, Richard J.; Rainoni, Alessandro; Clarkson, John P. (2016)
Publisher: Wiley-Blackwell Publishing Ltd.
Languages: English
Types: Article
Subjects: QR, QK, S1, SB

Classified by OpenAIRE into

mesheuropmc: food and beverages
Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) based on their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. F. oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterised 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic while 10 were non-pathogenic. Molecular characterisation of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades but did not distinguish pathogenic and non-pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted in Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterised domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp. but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp. there were clear differences in sequence which were unique to FOC while CRX1 and C5 genes appear to be largely FOC specific. This article is protected by copyright. All rights reserved.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bayraktar, H., Tu€rkkan, M. and Dolar, F.S. (2010) Characterization of Fusarium oxysporum f.sp. cepae from onion in Turkey based on vegetative compatibility and rDNA RFLP analysis. J. Phytopathol. 158, 691-697.
    • Boratyn, G.M., Camacho, C., Cooper, P.S., Coulouris, G., Fong, A., Ma, N., Madden, T.L., Matten, W.T., McGinnis, S.D., Merezhuk, Y., Raytselis, Y., Sayers, E.W., Tao, T., Ye, J. and Zaretskaya, I. (2013) BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 41, W29-W33.
    • Brayford, D. (1996) IMI descriptions of fungi and bacteria set 127. Mycopathologia, 133, 35-63.
    • Broad Institute/MIT. (2007) Fusarium Comparative Sequencing Project. Available at: http://www.broadinstitute.org/. Accessed March 2015.
    • Chakrabarti, A., Rep, M., Wang, B., Ashton, A., Dodds, P. and Ellis, J. (2011) Variation in potential effector genes distinguishing Australian and non-Australian isolates of the cotton wilt pathogen Fusarium oxysporum f.sp. vasinfectum. Plant Pathol. 60, 232-243.
    • Covey, P.A., Kuwitzky, B., Hanson, M. and Webb, K.M. (2014) Multilocus analysis using putative fungal effectors to describe a population of Fusarium oxysporum from sugar beet. Phytopathology, 104, 886-896.
    • Cramer, C. (2000) Breeding and genetics of Fusarium basal rot resistance in onion. Euphytica, 115, 159-166.
    • Dean, R., Van Kan, J.A., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G.D. (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414-430.
    • Dissanayake, M., Kashima, R., Tanaka, S. and Ito, S.-I. (2009a) Genetic diversity and pathogenicity of Fusarium oxysporum isolated from wilted Welsh onion in Japan. J. Gen. Plant Pathol. 75, 125-130.
    • Dissanayake, M., Kashima, R., Tanaka, S. and Ito, S.-I. (2009b) Pathogenic variation and molecular characterization of Fusarium species isolated from wilted Welsh onion in Japan. J. Gen. Plant Pathol. 75, 37-45.
    • du Toit, L.J., Inglis, D.A. and Pelter, G.Q. (2003) Fusarium proliferatum pathogenic on onion bulbs in Washington. Plant Dis. 87, 750-750.
    • Entwistle, A.R. (1990) Root diseases. In: Onions and Allied Crops (Brewster, J.L., ed.), pp. 103-154. Boca Raton, FL: CRC Press.
    • FAOSTAT. (2012) Food and Agricultural Organization of the United Nations - Production Statistics. Available at: http://faostat3.fao.org/home/E. Accessed March 2015.
    • Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783-791.
    • Fraser-Smith, S., Czislowski, E., Meldrum, R.A., Zander, M., O'Neill, W., Balali, G.R. and Aitken, E.A.B. (2014) Sequence variation in the putative effector gene SIX8 facilitates molecular differentiation of Fusarium oxysporum f. sp. cubense. Plant Pathol. 63, 1044-1052.
    • Galvan, G., Koning-Boucoiran, C., Koopman, W., Burger-Meijer, K., Gonzalez, P., Waalwijk, C., Kik, C. and Scholten, O. (2008) Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species. Eur. J. Plant Pathol. 121, 499-512.
    • Gawehns, F., Houterman, P.M., Ichou, F.A., Michielse, C.B., Hijdra, M., Cornelissen, B.J., Rep, M. and Takken, F.L. (2014) The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death. Mol. Plant-Microbe Interact. 27, 336-348.
    • Ghanbarzadeh, B., Mohammadi Goltapeh, E. and Safaie, N. (2013) Identification of Fusarium species causing basal rot of onion in East Azarbaijan province, Iran and evaluation of their virulence on onion bulbs and seedlings. Arch. Phytopathol. Plant Protect. 47, 1050-1062.
    • Houterman, P.M., Speijer, D., Dekker, H.L., De Koster, C.G., Cornelissen, B.J.C. and Rep, M. (2007) The mixed xylem sap proteome of Fusarium oxysporuminfected tomato plants. Mol. Plant Pathol. 8, 215-221.
    • Houterman, P.M., Cornelissen, B.J.C. and Rep, M. (2008) Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathog. 4, e1000061.
    • Houterman, P.M., Ma, L., Van Ooijen, G., De Vroomen, M.J., Cornelissen, B.J.C., Takken, F.L.W. and Rep, M. (2009) The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant J. 58, 970-978.
    • Jiang, R.H.Y., Tripathy, S., Govers, F. and Tyler, B.M. (2008) RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members, Proc. Natl. Acad. Sci. USA 105, 4874-4879.
    • Jukes, T.H. and Cantor, C.R. (1969) Evolution of protein molecules. In: Mammalian Protein Metabolism (Munro, H.N., ed.), pp. 21-132. New York: Academic Press.
    • Kale, S.D. (2012) Oomycete and fungal effector entry, a microbial Trojan horse. New Phytol. 193, 874-881.
    • Kale, S.D., Gu, B., Capelluto, D.G.S., Dou, D., Feldman, E., Rumore, A., Arredondo, F.D., Hanlon, R., Fudal, I., Rouxel, T., Lawrence, C.B., Shan, W. and Tyler, B.M. (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell, 142, 284-295.
    • Kashiwa, T., Inami, K., Fujinaga, M., Ogiso, H., Yoshida, T., Teraoka, T. and Arie, T. (2013) An avirulence gene homologue in the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici race 1 functions as a virulence gene in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. J. Gen. Plant Pathol. 79, 412-421.
    • Kehr, A.E., O'Brien, J. and Davis, E.W. (1962) Pathogenicity of Fusarium oxysporum f. sp. cepae and its interaction with Pyrenochaeta terrestris on onion. Euphytica, 11, 197-208.
    • Keller, O., Kollmar, M., Stanke, M. and Waack, S. (2011) A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics, 27, 757-763.
    • Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.
    • Laurence, M.H., Summerell, B.A. and Liew, E.C.Y. (2015) Fusarium oxysporum f. sp. canariensis: evidence for horizontal gene transfer of putative pathogenicity genes. Plant Pathol. 64, 1068-1075.
    • Leslie, J.F. and Summerell, B.A. (2006) The Fusarium Laboratory Manual. Oxford: Blackwell Publishing.
    • Lievens, B., Houterman, P.M. and Rep, M. (2009) Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiol. Lett. 300, 201-215.
    • Lysøe, E., Harris, L.J., Walkowiak, S., Subramaniam, R., Divon, H.H., Riiser, E.S., Llorens, C., Gabaldon, T., Kistler, H.C., Jonkers, W., Kolseth, A.K., Nielsen, K.F., Thrane, U. and Frandsen, R.J. (2014) The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLos One, 9, e112703.
    • Ma, L.-J., van der Does, H.C., Borkovich, K.A., Coleman, J.J., Daboussi, M.-J., Di Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P.M., Kang, S., Shim, W-B., Woloshuk, C., Xie, X., Xu, J-R., Antoniw, J., Baker, S.E., Bluhm, B.H., Breakspear, A., Brown, D.W., Butchko, R.A.E., Chapman, S., Coulson, R., Coutinho, P.M., Danchin, E.G.J., Diener, A., Gale, L.R., Gardiner, D.M., Goff, S., Hammond-Kosack, K.E., Hilburn, K., Hua-Van, A., Jonkers, W., Kazan, K., Kodira, C.D., Koehrsen, M., Kumar, L., Lee, Y-H., Li, L., Manners, J.M., Miranda-Saavedra, D., Mukherjee, M., Park, G., Park, J., Park, S-Y., Proctor, R.H., Regev, A., Ruiz-Roldan, M.C., Sain, D., Sakthikumar, S., Sykes, S., Schwartz, D.C., Turgeon, B.G., Wapinski, I., Yoder, O., Young, S., Zeng, Q., Zhou, S., Galagan, J., Cuomo, C.A., Kistler, H.C. and Rep, M. (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464, 367-373.
    • Ma, L., Cornelissen, B.J.C. and Takken, F.L.W. (2013) A nuclear localization for Avr2 from Fusarium oxysporum is required to activate the tomato resistance protein I-2. Front. Plant Sci. 4, 94.
    • Ma, L, Houterman, P.M, Gawehns, F., Cao, L., Sillo, F, Richter, H., ClavijoOrtiz, M.J., Schmidt, S.M., Boeren, S., Vervoort, J., Cornelissen, B.J., Rep, M. and Takken, F.L. (2015) The AVR2-SIX5 gene pair is required to activate I-2- mediated immunity in tomato. New Phytol. 208, 507-518.
    • Meldrum, R.A., Fraser-Smith, S., Tran-Nguyen, L.T.T., Daly, A.M. and Aitken, E.A.B. (2012) Presence of putative pathogenicity genes in isolates of Fusarium oxysporum f. sp. cubense from Australia. Australas. Plant Pathol. 41, 551-557.
    • Michielse, C.B. and Rep, M. (2009) Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 10, 311-324.
    • O'Donnell, K., Kistler, H.C., Cigelnik, E. and Ploetz, R.C. (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA, 95, 2044-2049.
    • O'Donnell, K. and Cigelnik, E. (1997) Two divergent dntragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7, 103-16.
    • O'Donnell, K., Sarver, B.A., Brandt, M., Chang, D.C., Noble-Wang, J., Park, B.J., Sutton, D.A., Benjamin, L., Lindsley, M., Padhye, A., Geiser, D.M. and Ward, T.J. (2007) Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lensassociated U.S. keratitis outbreaks of 2005 and 2006. J Clin Microbiol 45, 2235- 48.
    • Petersen, T.N., Brunak, S., von Heijne, G. and Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8, 785- 786.
    • Rehmany, A.P., Gordon, A., Rose, L.E., Allen, R.L., Armstrong, M.R., Whisson, S.C., Kamoun, S., Tyler, B.M., Birch, P.R.J. and Beynon, J.L. (2005) Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell, 17, 1839-1850.
    • Rep, M. (2005) Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiol. Lett. 253, 19-27.
    • Rep, M., Van Der Does, H.C., Meijer, M., Van Wijk, R., Houterman, P.M., Dekker, H.L., De Koster, C.G. and Cornelissen, B.J.C. (2004) A small, cysteinerich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol. Microbiol. 53, 1373-1383.
    • Rout, E., Nanda, S., Nayak, S. and Joshi, R.K. (2014) Molecular characterization of NBS encoding resistance genes and induction analysis of a putative candidate gene linked to Fusarium basal rot resistance in Allium sativum. Physiol. Mol. Plant Pathol. 85, 15-24.
    • Sasaki, K., Nakahara, K., Shigyo, M., Tanaka, S. and Ito, S.-i. (2015a) Detection and quantification of onion isolates of Fusarium oxysporum f. sp. cepae in onion plant. J. Gen. Plant Pathol. 81, 232-236.
    • Sasaki, K., Nakahara, K., Tanaka, S., Shigyo, M. and Ito, S.I. (2015b) Genetic and pathogenic variability of Fusarium oxysporum f. sp. cepae isolated from onion and Welsh onion in Japan. Phytopathology, 105, 525-532
    • Schmidt, S.M., Houterman, P.M., Schreiver, I., Ma, L., Amyotte, S., Chellappan, B., Boeren, S., Takken, F.L. and Rep, M. (2013) MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics, 14, 119.
    • Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9, 671-675.
    • Shinmura, A. (2002) Studies on the ecology and control of Welsh onion root rot caused by Fusarium redolens. J. Gen. Plant Pathol. 68, 265.
    • Southwood, M.J., Viljoen, A., Mostert, G. and McLeod, A. (2012a) Molecular identification of two vegetative compatibility groups of Fusarium oxysporum f. sp. cepae. Phytopathology, 102, 204-213.
    • Southwood, M.J., Viljoen, A., Mostert, L., Rose, L.J. and McLeod, A. (2012b) Phylogenetic and biological characterization of Fusarium oxysporum isolates associated with onion in South Africa. Plant Dis. 96, 1250-1261.
    • Stanke, M. and Morgenstern, B. (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465-W467.
    • Stankovic, S., Levic, J., Petrovic, T., Logrieco, A. and Moretti, A. (2007) Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. Eur. J. Plant Pathol. 118, 165-172.
    • Takken, F. and Rep, M. (2010) The arms race between tomato and Fusarium oxysporum. Mol. Plant Pathol. 11, 309-314.
    • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739.
    • Taylor, A., Vagany, V., Barbara, D.J., Thomas, B., Pink, D.A.C., Jones, J.E. and Clarkson, J.P. (2013) Identification of differential resistance to six Fusarium oxysporum f. sp. cepae isolates in commercial onion cultivars through the development of a rapid seedling assay. Plant Pathol. 62, 103-111.
    • Thatcher, L.F., Gardiner, D.M., Kazan, K. and Manners, J.M. (2012) A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis. Mol. Plant-Microbe Interact. 25, 180-190.
    • Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.
    • Vagany, V. (2012) Characterisation of Fusarium pathogens in the UK. PhD Thesis. University of Warwick, Warwick: School of Life Sciences.
    • Welham, S.J. and Thompson, R. (1997) Likelihood Ratio Tests for Fixed Model Terms using Residual Maximum Likelihood. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 59, 701-14.
    • Yamazaki, M., Morita, Y., Kashiwa, T., Teraoka, T. and Arie, T. (2013) Fusarium proliferatum, an additional bulb rot pathogen of Chinese chive. J. Gen. Plant Pathol. 79, 431-434.
    • Zerbino, D.R. and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821-829.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article