LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Davison, P.A.; Hunter, C.N.; Horton, P. (2002)
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: food and beverages, fungi
Plant stress caused by extreme environmental conditions is already a principal reason for yield reduction in crops. The threat of global environment change makes it increasingly important to generate crop plants that will withstand such conditions. Stress, particularly stress caused by increased sunlight, leads to the production of reactive oxygen species that cause photo-oxidative cell damage. Carotenoids, which are present in the membranes of all photosynthetic organisms, help protect against such light-dependent oxidative damage. In plants, the xanthophyll cycle (the reversible interconversion of two carotenoids, violaxanthin and zeaxanthin) has a key photoprotective role and is therefore a promising target for genetic engineering to enhance stress tolerance. Here we show that in Arabidopsis thaliana overexpression of the chyB gene that encodes -carotene hydroxylase—an enzyme in the zeaxanthin biosynthetic pathway—causes a specific twofold increase in the size of the xanthophyll cycle pool. The plants are more tolerant to conditions of high light and high temperature, as shown by reduced leaf necrosis, reduced production of the stress indicator anthocyanin and reduced lipid peroxidation. Stress protection is probably due to the function of zeaxanthin in preventing oxidative damage of membranes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 15. Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051-2054 (2000).
    • 16. Mansfield, P. J., Boxer, L. A. & Suchard, S. J. Thrombospondin stimulates motility of human neutrophils. J. Cell Biol. 111, 3077-3086 (1990).
    • 17. Savill, J. S. et al. C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest. 83, 865-875 (1989).
    • 18. Brown, S. B., Bailey, K. & Savill, J. Actin is cleaved during constitutive apoptosis. Biochem. J. 323, 233-237 (1997).
    • 19. Bird, I. N. et al. Homophilic PECAM-1 (CD31) interactions prevent endothelial cell apoptosis but do not support cell spreading or migration. J. Cell Sci. 112, 1989-1997 (1999).
    • 20. Brown, S. B., Clarke, M. C., Magowan, L., Sanderson, H. & Savill, J. Constitutive death of platelets leading to scavenger receptor-mediated phagocytosis. A caspase-independent cell clearance program. J. Biol. Chem. 275, 5987-5996 (2000).
    • 21. Metzelaar, M. J., Korteweg, J., Sixma, J. J. & Nieuwenhuis, H. K. Biochemical characterization of PECAM-1 (CD31 antigen) on human platelets. Thromb. Haemost. 66, 700-707 (1991).
    • 3. Cogdell, R. J. & Frank, H. A. How carotenoids function in photosynthetic bacteria. Biochim. Biophys. Acta 895, 63-79 (1987).
    • 4. Yamamoto, H. Y., Nakayama, T. O. M. & Chichester, C. O. Studies on the light and dark interconversions of leaf xanthophylls. Arch. Biochem. Biophys. 97, 168-173 (1962).
    • 5. Demmig-Adams, B. & Adams, W. W. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 599-626 (1992).
    • 6. Cunningham, F. X. & Gantt, E. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 557-583 (1998).
    • 7. Sandmann, G. Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends Plant Sci. 6, 14-17 (2001).
    • 8. Ro¨mer, S. et al. Elevation of the provitamin A content of transgenic tomato plants. Nature Biotechnol. 18, 666-669 (2000).
    • 9. Ye, X. et al. Engineering the provitamin A (b-carotene) biosynthetic pathway into carotenoid-free rice endosperm. Science 287, 303-305 (2000).
    • 10. Misawa, N. et al. Expression of an Erwinia phytoene desaturase gene not only confers multiple resistance to herbicides interfering with carotenoid biosynthesis but also alters xanthophyll metabolism in transgenic plants. Plant J. 6, 481-489 (1994).
    • 11. Rock, C. & Zeevaart, J. The aba mutant of A. thaliana is impaired in epoxycarotenoid biosynthesis. Proc. Natl Acad. Sci. USA 88, 7496-7499 (1991).
    • 12. Rissler, H. & Pogson, B. Antisense inhibition of the b-carotene hydroxylase enzyme in Arabidopsis and the implications for carotenoid accumulation, photoprotection and antenna assembly. Photosynth. Res. 67, 127-137 (2001).
    • 13. Sun, Z., Gantt, E. & Cunningham, F. X. Cloning and functional analysis of the b-carotene hydroxylase of Arabidopsis thaliana. J. Biol. Chem. 271, 24349-24352 (1996).
    • 14. Ruban, A. V., Lee, P., Wentworth, M., Young, A. J. & Horton, P. Determination of the stoichiometry and strength of binding of xanthophylls in the photosystem II light harvesting complexes. J. Biol. Chem. 274, 10458-10465 (1999).
    • 15. Dixon, R. A. & Paiva, N. L. Stress-induced phenylpropanoid metabolism. Plant Cell 7, 1085-1097 (1995).
    • 16. Xiang, C., Werner, B., Christensen, E. & Oliver, D. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. 126, 564-574 (2001).
    • 17. Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 126, 485-493 (2001).
    • 18. Horton, P., Ruban, A. V. & Walters, R. G. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655-684 (1996).
    • 19. Li, X.-P. et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391-395 (2000).
    • 20. Pogson, B., Niyogi, K., Bjo¨rkman, O. & DellaPenna, D. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc. Natl Acad. Sci. USA 95, 13324-13329 (1998).
    • 21. Hurry, V., Anderson, J., Chow, W. & Osmond, B. Accumulation of zeaxanthin in abscisic aciddeficient mutants of Arabidopsis does not affect chlorophyll fluorescence quenching or sensitivity to photoinhibition in vivo. Plant Physiol. 113, 639-648 (1997).
    • 22. Havaux, M. & Niyogi, K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl Acad. Sci. USA 96, 8762-8767 (1999).
    • 23. Young, A. J. & Lowe, G. M. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 385, 20-27 (2001).
    • 24. Verhoeven, A. S., Bugos, R. C. & Yamamoto, H. Y. Transgenic tobacco with suppressed zeaxanthin formation is susceptible to stress-induced photoinhibition. Photosynthesis Res. 67, 27-39 (2001).
    • 25. Havaux, M., Tardy, F., Ravenel, J., Chanu, D. & Parot, P. Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. Plant Cell Environ. 19, 1359-1368 (1996).
    • 26. Valvekens, D., Van Montagu, M. & Van Lijsebettens, M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl Acad. Sci. USA 85, 5536-5540 (1988).
    • 27. Noctor, G., Rees, D., Young, A. & Horton, P. The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence and trans-thylakoid pH gradient in isolated chloroplasts. Biochem. Biophys. Acta 1057, 320-330 (1991).
    • 28. Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem. Biophys. Acta 975, 384-394 (1989).
    • 29. Laby, R. J., Kincaid, M. S., Kim, D. G. & Gibson, S. I. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J. 23, 587-596 (2000).
    • 30. Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid-reactive substance assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604-611 (1999).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • WT

Cite this article